SOLUTIONS TO SOME QUESTIONS OF WORKSHEET GIVEN ON TUESDAY 02-05-2017
1.
In a triangle ABC if A = (1, 2) and internal angle bisectors through B and C are
y = x and y = -2x. The in radius r of the ABC is
1
1
(a)
(b)*
(c)
2/3
(d)
none of these.
2
3
Solution: Image of A about y = x, y = -2x are A1 and A2 which lies on BC.
11 2
A1 2,1 , A2 , equation of BC is x – 7y + 5 = 0
5 5
5
5
1
r ID
1 49 5 2
2
Let AB be any chord of the circle x2 + y2 – 4x – 4y + 4 = 0 which subtends an angle of 90 at the
point (2, 3), then the locus of the mid point of AB is circle whose centre is
(a)
(1, 5)
(b)*
(1, 5/2)
(c)
(1, 3/2)
(d)
(2, 5/2)
Solution: Let mid point of AB is M(h, k)
AB subtends 90 at (2, 3)
AM = MB
3
=
h 2 2 k 3 2
Also, CM2 + MB2 = CB2
(h – 2)2 + (k – 2)2 + (h – 2)2 + (k – 3)2 = 4
x2 + y2 – 2x – 5y + 17/2 = 0
7.
The conjugate hyperbola of the hyperbola 2 x 2 3 y 2 6 must be
(a)*
Solution:
y 2 x2
1 (b)
2
3
y 2 x2
1
2
3
The hyperbola is
y 2 x2
1 (d)
3
2
y 2 x2
1
3
2
x2 y 2
1
3
2
Conjugate hyperbola is
8.
(c)
x2 y 2
y 2 x2
1 or
1.
3
2
2
3
x2 y 2
1 is
The number of rational points on the ellipse
16 9
(a)
none
(b)
m2 n2
.4
Solution: Take x 2
m n2
two
(c)
four
2mn
, y 2
.3
m n2
*(d)
Infinite.
2
2
x y
1
4 3
For all m , n In particular for rational m & n.
9.
The foci of the ellipse x2 + 4x + 42y2 = 0 will lie on the line x = - 2, if
1 1
2 2
(a) 2, 2
*(b) ,
(c) 1
(d) None of these.
Solution: The ellipse can be written as x 2 4 2 y 2 4
2
or
x 2
4
2
y2
1
1 . Now the foci will lie on the line x + 2 = 0 if 4 2
1 2
1 1
2 2
or ,
10.
If a circle cuts the rectangular hyperbola y
1
at four distinct points
x
xi , yi ( i 1, 2,3, 4)
then necessarily
(a)
x1 x2 3 x4 0
(b)
y1 y2 y3 y4 0
(c)
1 1
1
1
1
x1 x2 x3 x4
(d)*
x1 x2 y3 y4 .
Solution: Let the circle be x2 + y2 + 2gx + 2fy + c = 0 then at intersection with y
have x 2
1
2f
2 gx
c 0
2
x
x
x1 x2 x3 x4 1
12.
x1 x2
x 4 2 gx3 cx2 2 fx 1 0
1 1
1 x1 x2 y3 y4
y3 y4
AB p , BC q , CD r ,
Let ABCD be a cyclic quadrilateral with lengths of sides as
DA s. Then
(a)
AC
must be equal to
BD
p2 q2
r 2 s2
(b)
1
we
x
pq
rs
(c)*
ps qr
pq rs
(d)
p+q
.
r+s
AC 2 p 2 q 2 2 pq cos B r 2 s 2 2rs cos(180 B)
Solution:
cos B
p2 q2 r 2 s2
2( pq rs)
p 2 q 2 r 2 s 2 ( pr qs)( ps qr )
pq rs
2( pq rs)
Also AC 2 p 2 q 2 2 pq
Similarly BD 2
13.
( pq rs)( pr qs)
ps qr
AC 2
( ps qr ) 2
BD 2
( pq rs)2
The minimum value of sin 3A + sin 3B + sin 3C in a triangle must be
(a)
-1
(b)
-2
(c)
3
2
(d)*
None of these.
Solution: Since thrice of an acute angle can cross 180 the given expression can become negative in a
triangle. Then the minimum value must be negative and must lie
three quantities sin 3A, sin 3B, sin 3C can not be
between -3 and 0. But all the
negative (for other wise A + B + C > 180)
sin 3A + sin 3B + sin 3C can not be less than -2
It may become -2 when sin 3A = sin 3B = -1, sin 3C = 0
A = B = 90, C = 60
Which is not possible in a triangle
minimum value will be greater than -2
we can take A = B = 89, C = 1 to get
sin 3A + sin 3B + sin C -1.897 which is less than all the choices given
(d) is the correct answer
26.
If f ( x) and g ( x) are two twice differential functions then
f ( x) g ( x) dx f ( x) g ( x) f ( x) g ( x) is equal to
(a)
f ( x) g ( x) dx
(b)*
f ( x) g ( x) dx
f ( x) g ( x) dx
(c)
(d)
None of these
Sol: (b): On applying the formula for integration by parts ( taking f ( x) as second function
27.
g ( x) f ( x)dx g ( x) f ( x) g ( x) f ( x)dx
g ( x) f ( x) g ( x) f ( x) g ( x) f ( x)dx
g ( x) f ( x) f ( x) g ( x) g ( x) f ( x)dx
(b) is correct .
If n is a positive integer. Let U n
U n Vn
(a)
Sol: ( b) U n
π
0
(b)*
nx
2 dx
2 x
2sin
2
2
2sin
π
0
2
π / 2 sin ny
1 cos nx
dx , Vn
dy then
0
1 cos nx
sin 2 y
U n 2Vn
1
U n Vn
2
(c)
put x 2 y then U n
π/2
0
(d)
None of these
sin 2 ny
2dy 2Vn (b) is
sin 2 y
correct.
28.
The value of the integral
π
3
3
(a)
Sol: (b):
π
0
1 2cos dx
π
0
(b)
2π
3
0
1 2cos x dx is
π
2 3
3
(1 2cos x) dx
(c)
π
2π
3
π
4 3
3
(1 2cos x) dx
(d)
2π
4 3
3
π
2 3
3
(a) is correct .
29.
Let f ( x ) be a function such that , f (0) f (0) 0, f ( x) sec4 x 4, then the function is .
(a)
1
l n(sin x) tan 3 x x 2
3
(b)*
2
1
ln(sec x) tan 2 x 2 x 2
3
6
(c)
1
x2
2
ln (cos x) cos x
6
5
(c)
None of these .
Sol: (b) f ( x) (1 tan 2 x)sec2 x 4
f ( x) tan x
tan 3 x
4x C
3
1
3
On putting x = 0 we get C 0 . Thus f ( x) tan x tan x (sec 2 x 1) 4 x
2
1
f ( x) log sec x tan 2 x 2 x 2 C. C , again turns out to be zero
3
6
(b) is correct .
30.
0
f
x 2 1 x dx is equal to
1
) f ( x)dx
x2
(a)
(c)*
1
1
(1 2 ) f ( x) dx
2 1
x
(1
1
(b)
1
1
(1 2 ) f ( x)dx
1
2
x
(d)
None of these
x2 1 x t
Sol: (c): Put
x2 1 t x
dx
31.
x 1 t x 2 x
2
2
Sol: (a) .
2 2
3a 4
I
a
t 2 1 dx
2t.2t 2(t 2 1)
x
,
2t dt
4t 2
1
1
1 2 dt when x 0 , t 1 when x , t (c) is correct .
2 t
The value of the integral
(a)*
2
2
dx
a
x4 a2 x2
(b)
2 2
3a 4
dx
x (a x 2 1)1/ 2
5
is
(c)
2 1
2a 4
(d)
None of these
Put
32.
a2
1 t 2 . when x a , t 2 . When x , t 1
2
x
If a, 0, b 0
(a)
lim
x 0
a
b
x b
a x
(b)*
Sol: (b) lim it lim
x 0
If sin x x
Then lim
x 0
(a)
b
a
(c)
x b b
a x x
b x b b
lim
x 0
a a x a
33.
( x denotes greatest integer x is equal to )
( using
( x 0 and
zero
(d)
1
a
x x x
b
is finite ).
x
x3 x5 x 7
..... for all x and f ( x) x sin(sin x) sin 2 x
3! 5! 7!
f ( x)
is non zero and finite if m is
xm
4
(b)
-4
x3 x5
......
Sol: (d) f ( x) x sin x
3! 5!
2
(c)
2
x3 x5
x .........
3! 5!
(d)*
6
2
3
5
1
1
x3 x5
x3 x5
x3 x5
= x x ..... x ........ x ...... ....
3! 5!
3! 5!
3! 5!
3!
5!
( x
x3 x5
......)2
3! 5!
Now there are no terms of x0 , x1 , x3 and x5 . Coeff of x 2 1 1 0
Coeff of x 4
1 1 2
=0 If can be observed that coeff of x 6 is non zero
3! 3! 3!
x sin(sin x) sin 2 x Ax6 Bx7 ........( A 0)
x sin(sin x) sin 2 x
A Bx Cx 2 ........
6
x
34.
m = 6.
Using the results
1 1 1
π2
.........
, and
12 22 32
6
1
0
Sol:
lim it A
log(1 x) x
x 2 x3
........
2 3
log x log(1 x)dx is equal to
(a)*
2 π2 / 6
(a):
x 2 x3 x 4
log x log(1 x) log x x ...... .
2 3 4
Let I m
1
0
(b)
1 π2 / 6
(c)
1 π2 / 6
(d)
none of these
x m log xdx
1
m 1
11 x
x m 1
1
.
dx 0
Then on integrating I m log x.
0
m 1 0
x m 1
(m 1) 2
1
0
log x log(1 x)dx
1
1
1
1
1
1
.....
2
....... 2
2
2
2
2
1.2 2.3 3.4
1.2 2.3 3.4
1
1
1
1 1 1 1 1 1 1 1 1
1 1 1
.....
.... 2 2 2 ......
1.2 2.3 3.4
1 2 2 2 3 3 3 4 4
2 3 4
π2 1
π2
1 1 1 1 1
= 1 ....
2 2
6
2 2 3 3 4
6 1
36.
The solution of y 5 x y x
dy
0 is
dx
5
(a)
x4 1 x
C
4 5 y
(a) is correct .
4
(b)*
x5 1 x
C
5 4 y
5
x x4
C
y 4
(c)
x5
( xy ) C
5
4
(d)
The given differential equation can be written as y5 xdx ydx xdy 0
Sol: (b):
Multiplying by
x3 ydx xdy
x3
4
we
have
x
dx
,
0 . On Integrating ,
y3
y2
y3
4
x5 1 x
we get
C .
5 4 y
37.
Sol: (b):
f ( x)
1
1
d
then
lim f ( x) must be equal to
da x a
sin x sin a ( x a) cos a
(a)
1
sec3 a sec a
2
(b)*
1
sec3 a sec a
2
(c)
1
sec3 a sec a
2
(d)
sec3 a
( x a) cos a sin x sin a
( x a) cos a (sin x sin a)
f ( x)
Since lim
xa
( x a) cos a sin x sin a
xa
.
2
( x a) cos a
sin x sin a
( x a) cos a sin x sin a
xa
1
we try to find lim
x
a
sin x sin a
cos a
( x a)2 cos a
If it exists then our separating becomes justified . The limit by LH rule
lim
x a
cos a cos x
2( x a) cos a
original limit =
f (a)
=
lim
xa
1
1
1
tan a
2
cos a 2
cos x cos a
1
.
xa
2 cos a
1
1
sec a sec 2 a sec a tan 2 a
2
2
1
sec a tan a
2
( sin a )
1
2 cos a
1 3
1
sec a sec a(sec 2 a 1)
2
2
1
sec3 a sec a
2
(b) is correct
n
39.
1
f x n
must be equal to
Let f be a positive differentiable function on (0, ) then , lim
n
f ( x)
(a)
1
(b)
f ( x )
f ( x)
Solution: Value of given limit e
40.
(c)*
1
f ( x )
n 1
f ( x)
lim
n
if x 1
0
log 2 x if x 1
Let f(x) =
e
f ( x )
f ( x)
(d)
e.
n
e
1
f x f ( x )
n
n
lim
f ( x)
n
e
lim
n
f ( x h ) f ( x ) 1
.
f ( x)
f ( x)
Let f 2(x) = f( f (x)), f 3(x) = f ( f (2) (x))
and in general f ( n1) ( x) f ( f ( n ) ( x)).
If T (n) min{n 1: f ( n ) ( x) 0} then T (425262 ) must be equal to
(a)
7
Solution: f ( f ( x))
f
(b)
f (0)
6
(c)*
5
x 1
x
log x 1
2
0
x1
0
1 x 2
x
log log x 2
2
Again ff ( f ( x ))
0
x
log log 2
0
x
log log log 2
x2
if x 2
x 22
if x 22
(d)
4.
e
f ( x )
f ( x)
.
0
f ( f ( f ( x)))
x
log log log log log
2
0
f ( f ( f ( f ( f ( x)))))
x
log log log log log
2
since 216< 425262 22
16
x 22
2
x 22
2
x 22
22
x 22
22
Therefore the smallest n such that for which
f ( n ) ( x) 0 for x 425262 is 5
whence T(425262 ) = 5.
© Copyright 2026 Paperzz