Open Math. 2017; 15: 446–458 Open Mathematics Open Access Research Article Ebénézer Ntienjem* Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 DOI 10.1515/math-2017-0041 Received August 30, 2016; accepted February 28, 2017. Abstract: The convolution sum, P .l/ .m/, where ˛ˇ D 22, 44, 52, is evaluated for all natural numbers .l;m/2N2 0 ˛ lCˇ mDn n. Modular forms are used to achieve these evaluations. Since the modular space of level 22 is contained in that of level 44, we almost completely use the basis elements of the modular space of level 44 to carry out the evaluation of the convolution sums for ˛ˇ D 22. We then use these convolution sums to determine formulae for the number of representations of a positive integer by the octonary quadratic forms a .x12 Cx22 Cx32 Cx42 /Cb .x52 Cx62 Cx72 Cx82 /, where .a; b/ D .1; 11/; .1; 13/. Keywords: Sums of Divisors function, Convolution Sums, Dedekind eta function, Modular Forms, Eisenstein Series, Cusp Forms, Octonary quadratic Forms, Number of Representations MSC: 11A25, 11E20, 11E25, 11F11, 11F20, 11F27 1 Introduction Let in the sequel N, N0 , Z, Q, R and C denote the sets of positive integers, non-negative integers, integers, rational numbers, real numbers and complex numbers, respectively. Suppose that k; n 2 N. Then the sum of positive divisors of n to the power of k, k .n/, is defined by X k .n/ D d k: (1) 0<d jn We write .n/ as a synonym for 1 .n/. For m … N we set k .m/ D 0. Suppose now that ˛; ˇ 2 N are such that ˛ ˇ. Then the convolution sum, W.˛;ˇ/ .n/, is defined as follows: X W.˛;ˇ/ .n/ D .l/ .m/: (2) .l;m/2N2 0 ˛ lCˇ mDn We write Wˇ .n/ as a synonym for W.1;ˇ/ .n/. Given ˛; ˇ 2 N, if for all .l; m/ 2 N20 it holds that ˛ l C ˇ m ¤ n then we set W.˛;ˇ/ .n/ D 0. For those convolution sums W.˛;ˇ/ .n/ that have so far been evaluated, the levels ˛ˇ are given in Table 1. We discuss the evaluation of the convolution sums of level ˛ˇ D 22; 44 and ˛ˇ D 52, i.e., .˛; ˇ/ D .1; 22/, .2; 11/, .1; 44/, .4; 11/, .1; 52/, .4; 13/. Convolution sums of these levels have not been evaluated yet as one can notice from Table 1. *Corresponding Author: Ebénézer Ntienjem: Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada, E-mail: [email protected], [email protected] © 2017 Ntienjem, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 447 Table 1. Known convolution sums W.˛;ˇ/ .n/ Level ˛ˇ Authors References 1 M. Besge, J. W. L. Glaisher, S. Ramanujan [1–3] 2, 3, 4 J. G. Huard & Z. M. Ou & B. K. Spearman & K. S. Williams [4] 5, 7 M. Lemire & K. S. Williams, S. Cooper & P. C. Toh [5, 6] 6 S. Alaca & K. S. Williams [7] 8, 9 K. S. Williams [8, 9] 10, 11, 13, 14 E. Royer [10] 12, 16, 18, 24 A. Alaca & S. Alaca & K. S. Williams [11–14] 15 B. Ramakrishman & B. Sahu [15] 20, 10 S. Cooper & D. Ye [16] 23 H. H. Chan & S. Cooper [17] 25 E. X. W. Xia & X. L. Tian & O. X. M. Yao [18] 27, 32 L lu S. Alaca & Y. Kesiciog [19] 36 D. Ye [20] 14, 26, 28, 30 E. Ntienjem [21] As an application, convolution sums are used to determine explicit formulae for the number of representations of a positive integer n by the octonary quadratic forms a .x12 C x22 C x32 C x42 / C b .x52 C x62 C x72 C x82 /; (3) c .x12 C x1 x2 C x22 C x32 C x3 x4 C x42 / C d .x52 C x5 x6 C x62 C x72 C x7 x8 C x82 /; (4) and respectively, where a; b; c; d 2 N. So far known explicit formulae for the number of representations of n by the octonary form Equation 3 are referenced in Table 2. Table 2. Known representations of n by the form Equation 3 .a; b/ Authors References (1,2) K. S. Williams [8] (1,4) A. Alaca & S. Alaca & K. S. Williams [12] (1,5) S. Cooper & D. Ye [16] (1,6) B. Ramakrishman & B. Sahu [15] (1,8) L lu S. Alaca & Y. Kesiciog [19] (1,7) E. Ntienjem [21] We determine formulae for the number of representations of a positive integer n by the octonary quadratic form Equation 3 for which .a; b/ D .1; 11/; .1; 13/. These formulae for the number of representations are also new according to Table 2. This paper is organized in the following way. In Section 2 we discuss modular forms, briefly define eta functions and convolution sums, and prove the generalization of the extraction of the convolution sum. Our main results on the evaluation of the convolution sums are discussed in Section 3. The determination of formulae for the number of representations of a positive integer n is discussed in Section 4. Software for symbolic scientific computation is used to obtain the results of this paper. This software comprises the open source software packages GiNaC, Maxima, REDUCE, SAGE and the commercial software package MAPLE. 448 E. Ntienjem 2 Modular forms and convolution sums Let H be the upper half-plane, that is H D fz 2 C j Im.z/ > 0g, and let G D SL2 .R/ be the group of 2 2-matrices a b such that a; b; c; d 2 R and ad bc D 1 hold. Let furthermore D SL2 .Z/ be the full modular group which c d is a subgroup of SL2 .R/. Let N 2 N. Then ˚ a b .N / D 2 SL2 .Z/ j ac db 10 01 .mod N / c d is a subgroup of G and is called the principal congruence subgroup of level N. A subgroup H of G is called a congruence subgroup of level N if it contains .N /. Relevant for our purposes is the following congruence subgroup: ˚ a b 0 .N / D 2 SL2 .Z/ j c 0 .mod N / : c d Let k; N 2 N and let 0 be a congruence subgroup of level N 2 N. Let k 2 Z; 2 SL2 .Z/ and f W H [ Q [ f1g ! C [ f1g. We denote by f Œk the function whose value at z is .cz C d / k f ..z//, i.e., f Œk .z/ D .cz C d / k f ..z//. The following definition is based on the textbook by N. Koblitz [22, p. 108]. Definition 2.1. Let N 2 N, k 2 Z, f be a meromorphic function on H and 0 a congruence subgroup of level N . (a) f is called a modular function of weight k for 0 if (a1) for all 2 0 it holds that f Œk D f . P 2 izn (a2) for any ı 2 it holds that f Œık .z/ can be expressed in the form an e N , wherein an ¤ 0 for finitely n2Z many n 2 Z such that n < 0. (b) f is called a modular form of weight k for 0 if (b1) f is a modular function of weight k for 0 , (b2) f is holomorphic on H, (b3) for all ı 2 and for all n 2 Z such that n < 0 it holds that an D 0. (c) f is called a cusp form of weight k for 0 if (c1) f is a modular form of weight k for 0 , (c2) for all ı 2 it holds that a0 D 0. For k; N 2 N, let Mk .0 .N // be the space of modular forms of weight k for 0 .N /, Sk .0 .N // be the subspace of cusp forms of weight k for 0 .N /, and Ek .0 .N // be the subspace of Eisenstein forms of weight k for 0 .N /. Then the decomposition of the space of modular forms as a direct sum of the space generated by the Eisenstein series and the space of cusp forms, i.e., Mk .0 .N // D Ek .0 .N // ˚ Sk .0 .N //, is well-known; see for example W. A. Stein’s book (online version) [23, p. 81]. As noted in Section 5.3 of W. A. Stein’s book [23, p. 86] if the primitive Dirichlet characters are trivial and 1 2k P 2 k is even, then Ek .q/ D 1 B k 1 .n/ q n , where Bk are the Bernoulli numbers. k nD1 For the purpose of this paper we only consider trivial Dirichlet characters and 2 k even. Theorems 5.8 and 5.9 in Section 5.3 of [23, p. 86] also hold for this special case. 2.1 Eta functions The Dedekind eta function, .z/, is defined on the upper half-plane H by .z/ D e 2 iz 24 1 Q .1 e 2 i nz /. We set nD1 1 q D e 2 iz . Then .z/ D q 24 1 Q nD1 .1 1 q n / D q 24 F .q/, where F .q/ D 1 Q .1 q n /. nD1 M. Newman [24, 25] systematically used the Dedekind eta function to construct modular forms for 0 .N /. M. Newman determined when a function f .z/ is a modular form for 0 .N / by providing conditions (i)-(iv) in the following theorem. G. Ligozat [26] determined the order of vanishing of an eta function at the cusps of 0 .N /, which is condition (v) or (v0 ) in Theorem 2.2. Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 449 The following theorem is proved in L. J. P. Kilford’s book [27, p. 99] and G. Köhler’s book [28, p. 37]; we will apply that theorem to determine eta quotients, f .z/, which belong to Mk .0 .N //, and especially those eta quotients which are in Sk .0 .N //. Theorem 2.2 (M. Newman and G. Ligozat ). Let N 2 N, D.N / be the set of all positive divisors of N , ı 2 D.N / Q and rı 2 Z. Let furthermore f .z/ D rı .ız/ be an -quotient. If the following five conditions are satisfied ı2D.N / (i) P ı rı 0 .mod 24/, ı2D.N / (ii) P ı2D.N / (iii) N ı rı 0 .mod 24/, ı rı is a square in Q, Q ı2D.N / (iv) 0 < P rı 0 .mod 4/ ı2D.N / (v) for each d 2 D.N / it holds that then f .z/ 2 Mk .0 .N //, where k P gcd .ı;d /2 ı rı 0, ı2D.N / P D 21 rı . ı2D.N / Moreover, the -quotient f .z/ belongs to Sk .0 .N // if (v) is replaced by P gcd .ı;d /2 rı > 0. (v’) for each d 2 D.N / it holds that ı ı2D.N / 2.2 Convolution sums W.˛;ˇ/ .n/ Recall that given ˛; ˇ 2 N such that ˛ ˇ, the convolution sum is defined by Equation 2. As observed by A. Alaca et al. [11], we can assume that gcd.˛; ˇ/ D 1. Let q 2 C be such that jqj < 1. Then the Eisenstein series L.q/ and M.q/ are defined as follows: L.q/ D E2 .q/ D 1 24 M.q/ D E4 .q/ D 1 C 240 1 X .n/q n ; (5) 3 .n/q n : (6) nD1 1 X nD1 The following two relevant results are essential for the sequel of this work and are a generalization of the extraction of the convolution sum using Eisenstein forms of weight 4 for all pairs .˛; ˇ/ 2 N2 . Their proofs are given by E. Ntienjem [21]. Lemma 2.3. Let ˛; ˇ 2 N. Then .˛ L.q ˛ / ˇ L.q ˇ //2 2 M4 .0 .˛ˇ//: Theorem 2.4. Let ˛; ˇ 2 N be such that ˛ and ˇ are relatively prime and ˛ < ˇ. Then .˛ L.q ˛ / ˇ L.q ˇ //2 D.˛ ˇ/2 C 1 X nD1 n n 240 ˛ 2 3 . / C 240 ˇ 2 3 . / ˛ ˇ n 6n/ . / C 48 ˇ .˛ ˛ 1152 ˛ˇ W.˛;ˇ/ .n/ q n : C 48 ˛ .ˇ n 6n/ . / ˇ (7) 450 E. Ntienjem 3 Evaluation of the convolution sums W.˛;ˇ/ .n/, where ˛ˇ D 22 ; 44; 52 In this section, we give explicit formulae for the convolution sums W.1;22/ .n/, W.2;11/ .n/, W.1;44/ .n/, W.4;11/ .n/, W.1;52/ .n/ and W.4;13/ .n/. 3.1 Bases for E4 .0 .˛ˇ// and S4 .0 .˛ˇ// with ˛ˇ D 44; 52 We observe the following inclusion relations M4 .0 .11// M4 .0 .22// M4 .0 .44// (8) M4 .0 .13// M4 .0 .26// M4 .0 .52//: (9) Therefore, it suffices to correspondingly determine the basis of the spaces M4 .0 .44// and M4 .0 .52//, respectively. We use the dimension formulae for the space of Eisenstein forms and the space of cusp forms in T. Miyake’s book [29, Thrm 2.5.2, p. 60] or W. A. Stein’s book [23, Prop. 6.1, p. 91] to deduce that dim.E4 .0 .44/// D dim.E4 .0 .52/// D 6, dim.S4 .0 .44// D 15 and dim.S4 .0 .52// D 18. Let D.44/ D f1; 2; 4; 11; 22; 44g and D.52/ D f1; 2; 4; 13; 26; 52g be the sets of all positive divisors of 44 and 52, respectively. Theorem 3.1. (a) The sets BE;44 D f M.q t / j t 2 D.44/ g and BE;52 D f M.q t / j t 2 D.52/ g are bases of E4 .0 .44// and E4 .0 .52//, respectively. (b) Let 1 i 15 and 1 j 18 be positive integers. Let ı1 2 D.44/ and .r.i; ı1 //i;ı1 be the Table 3 of the powers of .ı1 z/. Let ı2 2 D.52/ and .r.j; ı2 //j;ı2 be the Table 4 of the powers of .ı2 z/. Q Q Let furthermore Ai .q/ D r.i;ı1 / .ı1 z/ and Bj .q/ D r.j;ı2 / .ı2 z/ be selected elements of ı1 2D.44/ ı2 2D.52/ S4 .0 .44// and S4 .0 .52//, respectively. Then the sets BS;44 D f Ai .q/ j 1 i 15 g and BS;52 D f Bj .q/ j 1 j 18 g are bases of S4 .0 .44// and S4 .0 .52//, repectively. (c) The sets BM;44 D BE;44 [ BS;44 and BM;52 D BE;52 [ BS;52 constitute bases of M4 .0 .44// and M4 .0 .52//, respectively. For 1 i 15 and 1 j 18 let in the sequel Ai .q/ be expressed in the form 1 P ai .n/q n and Bj .q/ be nD1 expressed in the form 1 P bj .n/q n . nD1 Proof. We give the proof for the case ˛ˇ D 44. The case ˛ˇ D 52 is proved similarly. (a) By Theorem 5.8 in Section 5.3 of W. A. Stein [23, p. 86] M.q t / is in M4 .0 .t // for each t which is an element of D.44/. Since E4 .0 .44// has a finite dimension, it suffices to show that M.q t / with t 2 D.44/ are linearly independent. Suppose that x t 2 C with t 2 D.44/. We prove this by induction on the elements of the set D.44/ which is assumed to be ascendantly ordered. The case t D 1 2 D.44/ is obvious since comparing the coefficients of q t on both sides of the equation x t M.q t / D 0 clearly gives x t D 0. Suppose now that the cardinality of the set D.44/ is greater than 1 and that M.q t / are linearly independent for all tj44 and t t1 for a given t1 with 1 < t1 < 44. Let C be the proper non-empty subset of D.44/ which contains all positive divisors of 44 less than or equal to t1 . Note that all positive divisors of t1 constitute a subset of C . Let Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 451 us consider the non-empty subset C [ ft 0 g of D.44/, wherein t 0 is the next ascendant element of D.44/ which is greater than t1 the greatest element of the set C . Then X X 0 x t M.q t / D x t M.q t / C x t 0 M.q t / D 0: t 2C [ft 0 g t2C By the induction hypothesis it holds that x t D 0 for all t 2 C . So, we obtain from the above equation that x t 0 D 0 0 when we compare the coefficient of q t on both sides of the equation. Hence, the solution is x t D 0 for all t such that t is a positive divisor of 44. Therefore, the set BE;44 is linearly independent. Hence, the set BE;44 is a basis of E4 .0 .44//. (b) The Ai .q/ with 1 i 15 are obtained from an exhaustive search using Theorem 2.2 .i / .v 0 /. Hence, each Ai .q/ is an element of the space S4 .0 .44//. Since the dimension of S4 .0 .44// is 15, it suffices to show that the set f Ai .q/ j 1 i 15g is linearly 15 P independent. Suppose that xi 2 C and xi Ai .q/ D 0. Then iD1 15 X xi Ai .q/ D 1 X 15 X . xi ai .n/ /q n D 0 nD1 i D1 iD1 which gives the following homogeneous system of linear equations 15 X ai .n/ xi D 0; 1 n 15: (10) i D1 A simple computation using software for symbolic scientific computation shows that the determinant of the matrix of this homogeneous system of linear equations is non-zero. So, xi D 0 for all 1 i 15. Hence, the set f Ai .q/ j 1 i 15 g is linearly independent and therefore a basis of S4 .0 .44//. (c) Since M4 .0 .44// D E4 .0 .44// ˚ S4 .0 .44//, the result follows from (a) and (b). According to Equation 8 the basis elements Ai .q/, where 1 i 5, are contained in S4 .0 .22//. The basis element A2 .q/ is the only element of the space S4 .0 .11// that we are able to generate with the help of Theorem 2.2. Even though the basis element A14 .q/ looks like an element of S4 .0 .22//, it cannot be generated at level 22 using Theorem 2.2. To evaluate the convolution sums W.1;22/ .n/ and W.2;11/ .n/, we determine two additional basis elements of S4 .0 .22// which are A06 .q/ D 1 X .2z/3 .11z/5 .22z/ D a60 .n/q n ; .z/ nD1 9 A07 .q/ D 7 .2z/ .11z/ D 5 .z/3 .22z/ 1 X a70 .n/q n : nD1 Due to Equation 9 the basis elements Bj .q/, where 1 j 7 and j D 15; 17, belong to S4 .0 .26//. We are unable to generate any elements of the space S4 .0 .13// using Theorem 2.2. We note that B2j .q/ D Bj .q 2 /, where 4 j 7, B16 .q/ D B15 .q 2 / and B18 .q/ D B17 .q 2 /. Therefore, one can easily replicate the evaluation of the convolution sums W.1;26/ .n/ and W.2;13/ .n/ shown by E. Ntienjem [21]. 3.2 Evaluation of W.˛;ˇ/ .n/ where ˛ˇ D 22 ; 44; 52 Lemma 3.2. We have 2 .L.q / 22 L.q 22 2 // D 441 C 1 X nD1 3312 12672 n 3 .n/ C 3 . / 61 61 2 452 E. Ntienjem n 6557760 n 12096 45792 110880 3 . / C 3 . / C a1 .n/ C a2 .n/ 61 11 61 22 61 61 19872 73728 50688 C a3 .n/ C a4 .n/ a5 .n/ C 22176 a60 .n/ C 864 a70 .n/ q n ; 61 61 61 .2 L.q 2 / 11 L.q 11 //2 D 81 C 1 X 15840 nD1 61 3 .n/ C (11) 37440 n 3 . / 61 2 1626768 n 494208 n 36864 357408 3 . / 3 . / C a1 .n/ C a2 .n/ 61 11 61 22 61 61 1539072 834048 1160352 0 0 a3 .n/ C a4 .n/ C a5 .n/ 22176 a6 .n/ 864 a7 .n/ q n ; C 61 61 61 C 44 L.q 44 //2 D 1849 C .L.q/ 1 X 124464 nD1 61 3 .n/ 577662336 n 3 . / 40565 2 n 174240 n 62064288 n 2525690112 n 68986368 3 . / 3 . / C 3 . / C 3 . / C 5795 4 61 11 5795 22 5795 44 1440 82927872 887345568 1676429568 C a1 .n/ a2 .n/ a3 .n/ a4 .n/ 61 5795 5795 5795 2804007168 3753380736 13356288 4226609664 a5 .n/ C a6 .n/ a7 .n/ C a8 .n/ 5795 5795 19 5795 633600 527332608 7679232 a9 .n/ a10 .n/ C a11 .n/ 19 1159 19 15231744 131079168 317952 12595968 a12 .n/ a13 .n/ C a14 .n/ a15 .n/ q n ; 95 95 19 95 4 .4 L.q / 11 L.q 11 2 // D 49 C 1 X nD1 52 L.q 52 //2 D 2601 C 1 X 6109008 nD1 1243 3 .n/ 456504084816 n 3 . / 6064597 2 254592 n 7361952 n 4829528827344 n 3 . / 3 . / 3 . / 41 4 1243 13 6064597 26 434738304 n 3066144 498157179048 C 3 . / b1 .n/ C b2 .n/ 41 52 1243 6064597 927327070704 442577500560 8530413669648 C b3 .n/ b4 .n/ b5 .n/ 6064597 6064597 6064597 10161699732288 10388366352 1040832 b6 .n/ b7 .n/ C b8 .n/ 6064597 1243 41 329100929664 C 7488 b9 .n/ C b10 .n/ C 27456 b11 .n/ 147917 C (13) 80121888 n 110880 3 .n/ C 3 . / 61 5795 2 48338688 n 1817904 n 98480448 n 27320832 n 3 . / C 3 . / 3 . / 3 . / 5795 4 61 11 5795 22 5795 44 110880 174857472 1169427168 2114189568 C a1 .n/ C a2 .n/ C a3 .n/ C a4 .n/ 61 5795 5795 5795 3511080576 13318272 3641762304 3025513728 a5 .n/ a6 .n/ C a7 .n/ a8 .n/ C 5795 5795 19 5795 633600 663913728 7679232 15231744 C a9 .n/ C a10 .n/ a11 .n/ C a12 .n/ 19 1159 19 95 131079168 317952 12595968 C a13 .n/ a14 .n/ C a15 .n/ q n ; 95 19 95 .L.q/ (12) (14) Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 15249288510144 47009664 b12 .n/ C 17472 b13 .n/ C b14 .n/ 6064597 41 25166713896 4167031826880 126425023920 b15 .n/ C b16 .n/ b17 .n/ 551327 6064597 6064597 868608 C b18 .n/ q n ; 41 .4 L.q 4 / 13 L.q 13 //2 D 81 C 1 X 3066144 1243 nD1 453 (15) 240061230672 n 3 . / 6064597 2 3 .n/ 139392 n 45798672 n 53922031824 n C 3 . / C 3 . / 3 . / 41 4 1243 13 6064597 26 20290176 n 3066144 212735819880 C 3 . / b1 .n/ C b2 .n/ 41 52 1243 6064597 400561037808 5152459820400 251848851024 b3 .n/ b4 .n/ b5 .n/ C 6064597 6064597 6064597 5408748312192 5489355312 150336 b6 .n/ b7 .n/ C b8 .n/ 6064597 1243 41 151016538432 7488 b9 .n/ C b10 .n/ 27456 b11 .n/ 147917 8224832431680 544896 b12 .n/ 17472 b13 .n/ b14 .n/ 6064597 41 11115614088 2056953609600 64745693328 b15 .n/ C b16 .n/ b17 .n/ 551327 6064597 6064597 2304 b18 .n/ q n : 41 (16) Proof. We just prove the case .4 L.q 4 / 11 L.q 11 //2 . The other cases are proved similarly. It follows from Lemma 2.3 that .4 L.q 4 / 11 L.q 11 //2 2 M4 .0 .44//. Hence, by Theorem 3.1 (c), there exist Xı ; Yj 2 C; 1 j 15 and ı 2 D.44/, such that .4 L.q 4 / 11 L.q 11 //2 D X Xı M.q ı / C D Yj Aj .q/ j D1 ı2D.44/ X 15 X Xı C ı2D.44/ 1 X nD1 240 X ı2D.44/ mS X n 3 . / Xı C aj .n/ Yj q n : ı (17) j D1 We equate the right hand side of Equation 17 with that of Equation 7 when setting .˛; ˇ/ D .4; 11/ to obtain 1 X nD1 240 15 1 X X n n n 3 . / Xı C aj .n/ Yj q n D 3840 3 . / C 29040 3 . / ı 4 11 nD1 ı2D.44/ j D1 n n C192 .11 6 n/ . / C 528 .4 6 n/ . / 50688 W.4;11/ .n/ q n : 4 11 X We now take the coefficients of q n for which n is in f 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 20; 22; 44 g: This results in a system of linear equations whose unique solution determines the values of the unknown Xı for all ı 2 D.44/ and the values of the unkown Yj for all 1 j 15. Hence, we obtain the stated result. Our main result of this section is as follows. Theorem 3.3. Let n be a positive integer. Then W.1;22/ .n/ D 17 3 .n/ 1464 1 n 35 n 125 n 3 . / C 3 . / C 3 . / 122 2 488 11 366 22 454 E. Ntienjem 1 1 1 n 21 159 1 n/ .n/ C . n/ . / a1 .n/ a2 .n/ 24 88 24 4 22 2684 5368 69 32 2 7 0 3 0 a3 .n/ a4 .n/ C a5 .n/ a6 .n/ a .n/; 5368 671 61 8 88 7 C. W.2;11/ .n/ D W.1;44/ .n/ D W.4;11/ .n/ D 5 n 5 3 .n/ C 3 . / C 488 366 2 1 1 n 1 C. n/ . / C . 24 44 2 24 4029 668 a3 .n/ a4 .n/ 5368 671 137 n 39 n 3 . / C 3 . / 1464 11 122 22 1 n 16 1241 n/ . / a1 .n/ a2 .n/ 8 11 671 5368 3 0 362 7 a5 .n/ C a60 .n/ C a .n/; 671 8 88 7 13 501443 n 1361 n 55 n 3 .n/ C 3 . / 3 . / C 3 . / 366 1784860 2 5795 4 976 11 19591 n 9878 n 1 1 3 . / C 3 . / C . n/ .n/ 92720 22 17385 44 24 176 1 n 5 35993 1 n/ . / a1 .n/ C a2 .n/ C. 24 4 44 10736 127490 3081061 66147 1217017 3258143 C a3 .n/ C a4 .n/ C a5 .n/ a6 .n/ 1019920 11590 127490 254980 917233 25 20807 527 a7 .n/ a8 .n/ C a9 .n/ C a10 .n/ C 38 63745 38 2318 303 601 2586 69 a11 .n/ C a12 .n/ C a13 .n/ a14 .n/ 38 190 95 209 497 C a15 .n/; 190 35 25291 n 4178 n 11 n 3 .n/ 3 . / C 3 . / 3 . / 976 92720 2 17385 4 732 11 n 539 n 1 1 n 15543 3 . / C 3 . / C . n/ . / C 46360 22 5795 44 24 44 4 1 1 n 35 75893 C. n/ . / a1 .n/ a2 .n/ 24 16 11 976 127490 4060511 917617 1313157 3047813 a3 .n/ a4 .n/ a5 .n/ C a6 .n/ 1019920 127490 127490 254980 790313 25 288157 1051 a7 .n/ C a8 .n/ a9 .n/ a10 .n/ 76 63745 38 25498 303 601 2586 69 C a11 .n/ a12 .n/ a13 .n/ C a14 .n/ 38 190 95 209 497 a15 .n/; 190 W.1;52/ .n/ D 97 731577059 n 17 n 5899 n 3 .n/ C 3 . / 3 . / C 3 . / 1243 582201312 2 164 4 59664 13 7739629531 n 81757 n 1 1 C 3 . / 3 . / C . n/ .n/ 582201312 26 492 52 24 208 1 1 n 31939 6918849709 C. n/ . / C b1 .n/ b2 .n/ 24 4 52 775632 5045744704 19319313973 236419605 4556844909 b3 .n/ C b4 .n/ C b5 .n/ 7568617056 194067104 194067104 1357064601 5549341 139 C b6 .n/ C b7 .n/ b8 .n/ 48516776 39776 328 1 65925667 11 2036496863 b9 .n/ b10 .n/ b11 .n/ C b12 .n/ 8 1775004 24 48516776 7 3139 349537693 b13 .n/ b14 .n/ C b15 .n/ 24 164 458704064 (18) (19) (20) (21) Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 556494635 67534735 b16 .n/ C b17 .n/ 48516776 194067104 W.4;13/ .n/ D 29 b18 .n/; 82 31939 5001275639 n 47 n 24049 n 3 .n/ C 3 . / C 3 . / C 3 . / 775632 7568617056 2 6396 4 387816 13 1123375663 n 17613 n 1 1 n C 3 . / 3 . / C . n/ . / 7568617056 26 2132 52 24 52 4 1 1 n 31939 2954664165 C. n/ . / C b1 .n/ b2 .n/ 24 16 13 775632 5045744704 8345021621 35780970975 5246851063 b3 .n/ C b4 .n/ C b5 .n/ 7568617056 7568617056 2522872352 4695094021 38120523 261 C b6 .n/ C b7 .n/ b8 .n/ 315359044 517088 4264 786544471 11 42837668915 1 b10 .n/ C b11 .n/ C b12 .n/ C b9 .n/ 8 46150104 24 1892154264 473 154383529 7 b13 .n/ C b14 .n/ C b15 .n/ C 24 2132 458704064 5356650025 1348868611 1 b16 .n/ C b17 .n/ C b18 .n/: 946077132 7568617056 1066 455 (22) (23) Proof. We prove the case W.4;13/ .n/ as the other cases are proved similarly. We equate the right hand side of Equation 16 with that of Equation 7 when setting .˛; ˇ/ D .4; 13/, namely 1 X nD1 n n 3840 3 . / C 40560 3 . / C 192 .13 4 13 C 624 .4 n / 13 59904 W.4;13/ .n/ q n D 3 .n/ 240061230672 n 3 . / 6064597 2 6 n/ . 1 X 3066144 nD1 n 6 n/ . / 4 1243 n 45798672 n 53922031824 n 20290176 n 139392 3 . / C 3 . / 3 . / C 3 . / C 41 4 1243 13 6064597 26 41 52 3066144 212735819880 251848851024 b1 .n/ C b2 .n/ C b3 .n/ 1243 6064597 6064597 400561037808 5152459820400 5408748312192 b4 .n/ b5 .n/ b6 .n/ 6064597 6064597 6064597 5489355312 150336 151016538432 b7 .n/ C b8 .n/ 7488 b9 .n/ C b10 .n/ 1243 41 147917 544896 8224832431680 b12 .n/ 17472 b13 .n/ b14 .n/ 27456 b11 .n/ 6064597 41 11115614088 2056953609600 64745693328 b15 .n/ C b16 .n/ b17 .n/ 551327 6064597 6064597 2304 b18 .n/ q n : 41 We then solve for W.4;13/ .n/ to obtain the stated result. 4 Number of representations of a positive integer n by the qctonary quadratic form using W.˛;ˇ/ .n/ when ˛ˇ D 44; 52 Let n 2 N0 and the number of representations of n by the quaternary quadratic form x12 C x22 C x32 C x42 be denoted by r4 .n/. That means, r4 .n/ D card.f.x1 ; x2 ; x3 ; x4 / 2 Z4 j m D x12 C x22 C x32 C x42 g/: 456 E. Ntienjem We set r4 .0/ D 1. For all n 2 N, the following Jacobi’s identity is proved in K. S. Williams’ book [30, Thrm 9.5, p. 83] n r4 .n/ D 8 .n/ 32 . /: (24) 4 Let furthermore the number of representations of n by the octonary quadratic form a .x12 C x22 C x32 C x42 / C b .x52 C x62 C x72 C x82 / be denoted by N.a;b/ .n/. That means, N.a;b/ .n/ D card.f.x1 ; x2 ; x3 ; x4 ; x5 ; x6 ; x7 ; x8 / 2 Z8 j n D a .x12 C x22 C x32 C x42 / C b .x52 C x62 C x72 C x82 /g/: We infer the following result: Theorem 4.1. Let n 2 N and .a; b/ D .1; 11/; .1; 13/. Then n n n N.1;11/ .n/ D8 .n/ 32 . / C 8 . / 32 . / 4 11 44 n C 64 W.1;11/ .n/ C 1024 W.1;11/ . / 256 W.4;11/ .n/ C W.1;44/ .n/ ; 4 n n n N.1;13/ .n/ D8 .n/ 32 . / C 8 . / 32 . / 4 13 52 n C 64 W.1;13/ .n/ C 1024 W.1;13/ . / 256 W.4;13/ .n/ C W.1;52/ .n/ : 4 Proof. We only prove N.1;11/ .n/ since that for N.1;13/ .n/ is done similarly. It holds that X n N.1;11/ .n/ D r4 .l/r4 .m/ D r4 .n/r4 .0/ C r4 .0/r4 . / C 11 2 .l;m/2N0 lC11 mDn X r4 .l/r4 .m/: .l;m/2N2 lC11 mDn We make use of Equation 24 to derive N.1;11/ .n/ D 8 .n/ n n 32 . / C 8 . / 4 11 32 . n /C 52 X .8 .l/ .l;m/2N2 lC11 mDn l 32 . //.8 .m/ 4 32 . m //: 4 We observe that l 32 . //.8 .m/ 4 The evaluation of .8 .l/ 32 . m // D 64 .l/ .m/ 4 W.1;11/ .n/ D l 256 . / .m/ 4 X 256 .l/ . m l m / C 1024 . / . /: 4 4 4 .l/ .m/ .l;m/2N2 lC11 mDn is shown by E. Royer [10, Thrm 1.3]. We map l to 4l to infer X l W.4;11/ .n/ D . / .m/ D 4 2 .l;m/2N lC11 mDn X .l/ .m/: .l;m/2N2 4 lC11 mDn The evaluation of W.4;11/ .n/ is given in Equation 21. We next map m to 4m to conclude X X m W.1;44/ .n/ D .l/ . / D .l/ .m/: 4 2 2 .l;m/2N lC11 mDn .l;m/2N lC44 mDn The evaluation of W.1;44/ .n/ is provided by Equation 20. We simultaneously map l to 4l and m to 4m to deduce X X l m n . / . / D .l/ .m/ D W.1;11/ . /: 4 4 4 2 2 .l;m/2N lC11 mDn .l;m/2N lC11 mD n 4 Again, E. Royer [10, Thrm 1.3] has proved the evaluation of W.1;11/ .n/. We then put these evaluations together to obtain the stated result for N.1;11/ .n/. Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52 457 Tables Table 3. Exponents of -functions being basis elements of S4 .0 .44// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 4 11 22 44 6 4 2 0 -2 0 0 0 3 0 1 2 0 -3 0 -2 0 2 4 6 2 -3 0 0 -2 -3 0 2 9 0 0 0 0 0 0 2 5 4 1 6 4 0 0 0 2 6 4 2 0 -2 0 0 0 -1 0 -3 2 0 1 0 -2 0 2 4 6 2 5 0 0 -2 5 -4 -2 1 -4 0 0 0 0 0 2 1 4 5 6 4 8 8 0 10 Table 4. Exponents of -functions being basis elements of S4 .0 .52// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 4 13 26 52 1 3 1 3 1 3 1 0 2 0 2 0 2 0 -1 0 7 0 5 3 3 1 1 -1 -1 3 1 1 -1 3 1 1 5 -1 -3 7 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 0 5 0 -3 3 1 3 1 3 1 3 0 -2 0 -2 0 -2 0 5 0 -3 0 -1 1 1 3 3 5 5 1 3 3 5 1 3 3 -1 5 7 -3 0 0 0 0 0 0 0 3 3 3 3 5 5 5 0 -1 0 7 Acknowledgement: I am indebtedly thankful to the anonynuous referee for fruitful comments and suggestions on a draft of this paper. References [1] M. Besge. Extrait d’une lettre de M Besge à M Liouville. J Math Pure Appl, 1885, 7, 256. 458 [2] E. Ntienjem [6] [7] James Whitbread Lee Glaisher. On the square of the series in which the coefficients are the sums of the divisors of the exponents. Messenger Math, 1862, 14, 156–163. S. Ramanujan. On certain arithmetical functions. T Cambridge Phil Soc, 1916, 22, 159–184. J. G. Huard, Z. M. Ou, B. K. Spearman, and Kenneth S. Williams. Elementary evaluation of certain convolution sums involving divisor functions. Number Theory Millenium, 2002, 7, 229–274. A K Peters, Natick, MA. Mathieu Lemire and Kenneth S. Williams. Evaluation of two convolution sums involving the sum of divisors function. Bull Aust Math Soc, 2006, 73, 107–115. S. Cooper and P. C. Toh. Quintic and septic Eisenstein series. Ramanujan J, 2009, 19, 163–181. P P Şaban Alaca and Kenneth S. Williams. Evaluation of the convolution sums .l/.m/ and .l/.m/. J [8] Number Theory, 2007, 124(2), 490–510. P .m/.n Kenneth S. Williams. The convolution sum [3] [4] [5] lC6mDn 2lC3mDn 8m/. Pac J Math, 2006, 228, 387–396. m< n 8 [9] Kenneth S. Williams. The convolution sum P .m/.n 9m/. Int J Number Theory, 2005, 1(2), 193–205. m< n 9 [10] Emmanuel Royer. Evaluating convolution sums of divisor function by quasimodular forms. Int J Number Theory, 2007, 3(2), 231–261. P [11] Ayşe Alaca, Şaban Alaca, and Kenneth S. Williams. Evaluation of the convolution sums .l/.m/ and lC12mDn P .l/ .m/. Adv Theor Appl Math, 2006, 1(1), 27–48. 3lC4mDn [12] Ayşe Alaca, Şaban Alaca, and Kenneth S. Williams. P Evaluation of the convolution sums .l/.m/ and lC18mDn P .l/ .m/. Int Math Forum, 2007, 2(2), 45–68. 2lC9mDn [13] Ayşe Alaca, Şaban Alaca, and Kenneth S. Williams. P Evaluation of the convolution sums .l/.m/ and lC24mDn P .l/ .m/. Math J Okayama Univ, 2007, 49, 93–111. 3lC8mDn P [14] Ayşe Alaca, Şaban Alaca, and Kenneth S. Williams. The convolution sum .m/.n 16m/. Canad Math Bull, 2008, n m< 16 51(1), 3–14. [15] B. Ramakrishnan and B. Sahu. Evaluation of the convolution sums P lC15mDn Theory, 2013, 9(3), 799–809. [16] Shaun Cooper and Dongxi Ye. .l/.m/; lC20mDn P .l/.m/. Int J Number 3lC5mDn P Evaluation of the convolution sums P .l/.m/ and P .l/.m/ and 4lC5mDn .l/ .m/. Int J Number Theory, 2014, 10(6), 1386–1394. 2lC5mDn [17] H. H. Chan and Shaun Cooper. Powers of theta functions. Pac J Math, 2008, 235, 1–14. P [18] E. X. W. Xia, X. L. Tian, and O. X. M. Yao. Evaluation of the convolution sum .l/.m/. Int J Number Theory, 2014, lC25mDn 10(6), 1421–1430. [19] Şaban Alaca and Yavuz KesiciogL lu. Evaluation of the convolution sums P lC27mDn Number Theory, 2016, 12(1), 1–13. [20] Dongxi Ye. Evaluation of the convolution sums P .l/.m/ and lC36mDn 11(1), 171–183. [21] Ebénézer Ntienjem. Evaluation of the convolution sums P .l/.m/ and P .l/.m/. Int J lC32mDn .l/.m/. Int J Number Theory, 2015, 4lC9mDn P .l/.m/; where .˛; ˇ / is in ˛ lCˇ mDn f.1; 14/; .2; 7/; .1; 26/; .2; 13/; .1; 28/; .4; 7/; .1; 30/; .2; 15/; .3; 10/; .5; 6/g. Master’s thesis, School of Mathematics and Statistics, Carleton University, 2015. [22] Neal Koblitz. Introduction to Elliptic Curves and Modular Forms, volume 97 of Graduate Texts in Mathematics. Springer Verlag, New York, 2nd edition, 1993. [23] William A. Stein. Modular Forms, A Computational Approach, volume 79. American Mathematical Society, Graduate Studies in Mathematics, 2011. http://wstein.org/books/modform/modform/. [24] Morris Newman. Construction and application of a class of modular functions. Proc Lond Math Soc, 1957, 7(3), 334–350. [25] Morris Newman. Construction and application of a class of modular functions II. Proc Lond Math Soc, 1959, 9(3), 373–387. [26] Gérard Ligozat. Courbes modulaires de genre 1. Bull Soc Math France, 1975, 43, 5–80. [27] L. J. P. Kilford. Modular forms: A classical and computational introduction. Imperial College Press, London, 2008. [28] G. Köhler. Eta Products and Theta Series Identities, volume 3733 of Springer Monographs in Mathematics. Springer Verlag, Berlin Heidelberg, 2011. [29] Toshitsune Miyake. Modular Forms. Springer monographs in Mathematics. Springer Verlag, New York, 1989. [30] Kenneth S Williams. Number Theory in the Spirit of Liouville, volume 76 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2011.
© Copyright 2026 Paperzz