Deep belief nets experiments and some ideas. Karol Gregor NYU/Caltech Outline DBN Image database experiments Temporal sequences Deep belief network Backprop Labels H3 H2 H1 Input Preprocessing – Bag of words of SIFT With: Greg Griffin (Caltech) Images Features (using SIFT) Bag of words Word1 Word2 Word3 … Group them (e.g. K-means) Image1 23 12 92 … Image2 11 55 33 … 13 Scenes Database – Test error Train error - Pre-training on larger dataset - Comparison to svm, spm Explicit representations? Compatibility between databases Pretraining: Corel database Supervised training: 15 Scenes database Temporal Sequences Simple prediction Y t W t-1 t-2 X Supervised learning t-3 With hidden units (need them for several reasons) G H t-1,t-2,t-3 t-1,t-2,t-3 X t t Y ¡ E = WiXj kY H X i Yj H k + WjYk H Yj H k + WjY Yj + WkH H k Memisevic, R. F. and Hinton, G. E., Unsupervised Learning of Image Transformations. CVPR-07 Example pred_xyh_orig.m ¡ E = WiXj kY H X i Yj H k + WjYk H Yj H k + WjY Yj + WkH H k Additions G H t-1 t t-1 t X Y Sparsity: When inferring the H the first time, keep only the largest n units on Slow H change: After inferring the H the first time, take H=(G+H)/2 Examples pred_xyh.m present_line.m present_cross.m Cortex+Thalamus Hippocampus Senses Muscles e.g. Eye (through (through subretina, LGN) cortical structures) e.g. See: Jeff Hawkins: On Intelligence Cortical patch: Complex structure (not a single layer RBM) From Alex Thomson and Peter Bannister, (see numenta.com) Desired properties 1) Prediction ABCDEF G HJ KL EF H 2) Explicit representations for sequences V I S I O N R E S E A R C H time 3) Invariance discovery e.g. complex cell time 4) Sequences of variable length V I S I O N R E S E A R C H time 5) Long sequences Layer1 Layer2 1111111111 1 1 1 1 1 ? ?22222 2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 2 3 5 8 13 21 34 55 89 144 6) Multilayer - Inferred only after some time V I S I O N R E S E A R C H time 7) Smoother time steps 8) Variable speed - Can fit a knob with small speed range 9) Add a clock for actual time Cortex+Thalamus Hippocampus Senses Muscles e.g. Eye (through (through subretina, LGN) cortical structures) Cortex+Thalamus Hippocampus In Addition - Top down attention - Bottom up attention - Imagination - Working memory - Rewards Senses Muscles e.g. Eye (through (through subretina, LGN) cortical structures) Training data - Videos -Of the real world -Simplified: Cartoons (Simsons) -A robot in an environment -Problem: Hard to grasp objects -Artificial environment with 3D objects that are easy to manipulate (e.g. Grand theft auto IV with objects)
© Copyright 2025 Paperzz