Dynamic Response • Steady State Response: the part of response when t → ∞ • Transient response: the part of response right after the input is being applied. • Both are part of the total response total resp = z.i. resp + z.s.resp. z.i. resp = “Output due to i.c. when input ≡ 0” z.s. resp = “Output due to input excitation when all i.c. are set=0 at t=0” Both z.i. resp and z.s. resp have their own transient resp and their own steady state resp. Here ignore i.c. and consider z.s. resp. Typical test signal • Unit step signal: u (t ) us (t ) 1 L (us (t )) s us(t) 1 0 • Unit impulse:δ(t) δ(t) (t ) 0, t 0 a 0 a (t )dt 1 any b 0 b L ( (t )) 1, t u s (t ) (t )dt t • Unit ramp: t r (t ) 0 t0 t0 r(t) t r (t ) t u s (t ) u s (t )dt 1 L (r (t )) 2 s t • Unit acc. signal: 1 2 t a (t ) 2 0 t r (t )dt L (a (t )) 1 s3 a(t) t0 0.5 t0 0 1 t • Exponential signal: e at e u s (t ) 0 a0 at t0 t0 1 1 L (e u s (t )) sa at 0 • sinusoidal: sin t sin( t ) u s (t ) 0 L (sin( t ) u s (t )) 2 s 2 t0 t0 t • Unit step response: 1 u(s)= y(s)=H(s) H(s) s 1 s 1 input u ( t ) or s u.s.r output when s i.c. 0 1 L1 H ( s ) s In Matlab: step • Unit impulse resp: u(s)=1 y(s)=H(s) H(s) input (t) u.i.r L ( H ( s)) output when i.c. 0 1 Matlab: impulse Time domain response specifications • Defined based on unit step response • Defined for closed-loop system • Steady-state value yss y lim y t t , input u s t • Steady-state error ess e lim et 1 yss t • Settling time ts = time when y(t) last enters a tolerance band Peak time t p time when y (t ) reaches its maximum value Peak time : t p t ( y ymax ); ymax max( y ); hence : ymax y (t p ) Overshoot : M p ymax y ss percentage overshoot : ymax yss ymax 1 Mp 100% 100% yss 1 If ymax is reached as t , there is no peak time & there is no overshoot Delay time t d the time when y (t ) first reaches 50% of yss not freq. used some people use a percentage different from 50% rise time t r the time it takes for y (t ) to go from 0.1 yss to 0.9 yss for the first time . rise time captures how fast a system responds to changes in reference input t d , t p has similar effect If yss = 1 tp U s H s Y s 1 U s s bs bm s m b1s b0 H s n a s s a1s a0 1 Y s H s s By final value theorem b0 yss lim y t lim sY s lim H s t s 0 s 0 a0 In MATLAB: num = [ .. .. .. .. ]; den=[……]; b0 = num(length(num)), or num(end) a0 = den(length(den)), or den(end) yss=b0/a0 ess 1 yss If numerical values of y and t available, from [y, t]=step(num, den); abs(y – yss) < tol means inside band abs(y – yss) ≥ tol not inside e.g. t_out = t(abs(y – yss) >= tol) contains all those time points when y is not inside the band. Therefore, the last value in t_out will be the settling time. ts=t_out(end) Peak time tp = time when y(t) reaches its maximum value. Peak value ymax = y(tp) Hence: ymax = max(y); tp = t(y = ymax); Overshoot: OS = ymax - yss Percentage overshoot: ymax 1 ymax yss 100% Mp 100% yss 1 If t50 = t(y >= 0.5*yss), this contains all time points when y(t) is ≥ 50% of yss so the first such point is td. td=t50(1); Similarly, t10 = t(y >= 0.1*yss) & t90 = t(y >= 0.9*yss) can be used to find tr. tr=t90(1)-t10(1) u step specs are defined on step resp. i.c. 0 y ss y () 0.8, yd .s .s. 1 ess 0.2 yd . y ss ymax 0.92, overshoot 0.92 0.8 0.12 percentage o.s. 0.12 15% 0.8 90%yss 10%yss tr≈0.45 ts td≈0.35 tp≈0.9sec ts=0.45 yss=1 ess=0 O.S.=0 Mp=0 tp=∞ td≈0.2 tr≈0.35 tp=0.35 ts≈0.92 O.S.=0.4 Mp=40% yss=1 ess=0 td≈0.2 tr≈0.1 Transient Response • First order system transient response – Step response specs and relationship to pole location • Second order system transient response – Step response specs and relationship to pole location • Effects of additional poles and zeros Prototype first order system 1 p Consider : H ( s ) s 1 s p Y ( s) H ( s) U ( s) E ( s) U ( s) Y ( s) [1 H ( s )]U ( s ) E U(s) + s s 1 - 1 τs U ( s) 1 Let U ( s ) , i.e. , u (t ) u s (t ) unit step s 1 1 1 1 Y ( s) s (s 1) s s 1 s s p t y (t ) u s (t ) e u s (t ) u s (t ) e pt u s (t ) Y(s) First order system step resp Normalized time t/ Prototype first order system • • • • • No overshoot, tp=inf, Mp = 0 Yss=1, ess=0 Settling time ts = [-ln(tol)]/p Delay time td = [-ln(0.5)]/p Rise time tr = [ln(0.9) – ln(0.1)]/p • All times proportional to 1/p= • Larger p means faster response The error signal: e(t) = 1-y(t)=e-ptus(t) Normalized time t/ 1 is called the time constant. p In every τ seconds, the error is reduced by 63.2% 1 p s 1 E s u y s ss p ss p s p t et e pt us t e us t 1 e e 0.368 e 1 e2 e 2 1 0.368 2 e 2 General First-order system k s z k z p H s k s p s p We know how this responds to input Step response starts at y(0+)=k, final value kz/p 1/p = is still time constant; in every , y(t) moves 63.2% closer to final value Step response by MATLAB: >> p = . . >> n = [ b1 b0 ] >> d = [ 1 p ] >> step ( n , d ) Other MATLAB commands to explore: plot, hold, axis, xlabel, ylabel, title, text, gtext, semilogx, semilogy, loglog, subplot Unit ramp response: 1 u t r t 2 s p 1 p 1 Y s H s U s 2 2 s p s s ps s can use " step" to get ramp response by multiplyin g the denominato r by s. p 1 2 1 Y s 2 2 , s s p s s s 1 p t yt r t us t e us t t r t 1 e u s t e t error et r t yt t 1 e 1t lim et t e This is the steady - state tracking error. Note: In step response, the steady-state tracking error = zero. Unit impulse response: ut t U s 1 p Y s H s U s s p t 1 pt h t y t pe us t e u s t
© Copyright 2026 Paperzz