N. Janeva - IAEA-NDS

2RCM on Evaluated Nuclear
Data for Th-U Fuel Cycle
N. Janeva, A. Lukyanov, N. Koyumdjieva, K. Volev,
I. Sirakov, I. Ivanov
INRNE-BAS, Sofia
New format proposal
X( T ,   )  X[(1  K), (1  K * )]


X   du  du ' f (u, u ' )e
0
( u  u ')
e
Ku  K*u '
f (u, u ' )
0
F(u, u ' )  e
Ku  K*u '
characteristic function

K()  is 
      iy
s  ( n )/(2 D), y  (  )/(2 D),    E  / D,   E / D,    n /  n
Porter-Thomas distribution of neutron widths for , Wigner's
distribution of the resonance spacing () integrating over 


y
F( , , y)    Q(  )d   2

    y  2y  2i 

 2
2
2
=s(u+u’) =s(u-u’)
s N 1
K ()  i    ctg      iy  / N
N  0
1/ 2
periodicity 0    N
1
FN ( , , y) 
N
e n


0
e  n
N

0
 1 N 1  sh (2 y / N)  i sin 2(    ) / N 
exp    
 d
ch (2 y / N)  cos 2(    ) / N 
 N  0
  e  n
1
dn 



0
e
 n
dn 


1
f ( 0 ) 


(   0 ) 2
,
1
(   0 ) 2

  0
1
f  ( 0 ) 
,
  
1
  0
1,00
300K
0,95
0,90
0,85
f
0,80
0,75
eval. (0=1.)
0,70
endf 6.8 (0=1.)
0,65
experiment (Oigawa et al.)
0,60
0
10
20
30
40
50
E, keV
comparison of the experimental (Oigawa et al.2) and
calculated self-shielding factor for neutron capture using
HARFOR for a dilution cross section 0 = 1 barn
300K
1,00
0,95
0,90
0,85
f
0,80
eval. (0=1.)
0,75
endf 6.8 (0=1.)
0,70
eval. (0=100.)
endf 6.8 (0=100.)
0,65
0,60
0
10
20
30
40
50
E, keV
Calculated self-shielding factors for 232Th by HARFOR for a
dilution cross section 0 = 1,100 barn. We include the
calculations using the resonance parameters from endf 6.8 and
from an evaluation of the most recent data.
300K
HARR
1,00
0,95
0,90
0,85
0,80
f
0,75
0,70
eval. (0=1.)
0,65
endf 6.8 (0=1.)
experiment (Oigawa et al.)
0,60
0,55
0
5
10
15
20
25
30
35
40
45
50
55
E, keV
A comparison of the experimental (Oigawa et al.) and calculated selfshielding factor for neutron capture using HARFOR for 0 = 1 barn.
Combined analysis of average cross sections
 2
Tnl (E) 
 (E)  4k  (2l  1)sin l  cos 2l

1

T
(
E
)
l
nl


2
  (E)  4k
2
TnlTl
 (2l  1) T
l
l
l
0
r
1
nl
 Tl
F


Tnl (E)  s l E P l (E), Tl  l D,
2
2
Pl
1
r2
r-arc tg r
r2 1
2
r  arctg
3r
r4
3  r2
r 4  3r 2  9
R= 9.43 fm
s0=0.94(10-4)
s1=1.96(10-4)
s2=1.24(10-4)
Preliminary analysis with SAMMY code
RESOLUTION FUNCTION at the 58-m-FP
GELINA campaign_4+angle_9deg (REFIT)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
Resolution Function ( s-1)
25
25
20.59 eV
25.01 eV
30.01 eV
35.01 eV
40.01 eV
45.01 eV
50.01 eV
60.00 eV
70.03 eV
80.01 eV
90.02 eV
100.00 eV
150.00 eV
200.10 eV
250.00 eV
300.10 eV
350.10 eV
400.10 eV
20
15
10
450.10 eV
500.10 eV
550.00 eV
600.20 eV
650.10 eV
700.20 eV
750.10 eV
800.10 eV
850.20 eV
900.10 eV
950.40 eV
1000.00 eV
1501.00 eV
2001.00 eV
2501.00 eV
3000.00 eV
3501.00 eV
4001.00 eV
20
15
10
5
5
0
0.1
0.2
0.3
0.4
0.5
0.6
Time ( s)
0.7
0.8
0.9
1.0
1.1
232Th(n,
Capture Yield (unnormalized)
20.5
0.18
21.0
21.5
22.0
22.5
)-yield
23.0
23.5
24.0
24.5
0.18
0.16
0.16
0.14
0.14
0.12
0.12
0.10
0.10
0.08
0.08
0.06
0.06
0.04
0.04
0.02
0.02
0
0
-0.02
20.5
-0.02
21.0
21.5
22.0
22.5
23.0
Incident Energy (eV)
23.5
24.0
24.5
Breit-Wigner resonance in the cross section of radiative
captur near the threshold of inelastic scattering
G  E   k g
2
n 
      2   4
    n  in
   thr
    n
   thr
   thr
   thr
2
   4k g
F1 u  

n 

2
F1 u 
1
1 u  u   u
2
   4k g

2
 th  
u
2 u       thr 2


  0
2
F2 v  
v
n 
n   
2
1
v  u  
2
   th
2
n  
 1  v
  0
v  u 

F2 v 

2
2n   
ZE  
    
2

1
 a  o 


2


4

1
4   a

2


n
2





 1


   ia    in 
   ia    in  
1

Re  i 
Re  i 


     ia  n   a  n 
     ia  n   
 a  n 
2  
2

 a2
a  a2 4  
4  E
E      0 4
2
n  0 4
Z 
M  1  an

  
   an



M  N    '

 a 2   n 2
'

2
 2 4


 a 2   n 2


an 2


 a 2   n 2

2
1

 
  a  o    16  a  n 
2
 E   4
 Z0
N
 '     a  b 
Z0






     Re  i   p

p

hp 
  qp



 1


   ia    in 
   ia    in  
1
Re  i 
Re  i 



     ia  n   a  n 
     ia  n   
 a  n 
1