Reverse weighted norm inequalities for convolution type integrals 1

Armenian Journal of Mathematics
Volume 2, Number 3, 2009, 77–93
Reverse weighted π‘™π‘βˆ’ norm inequalities for convolution
type integrals
Nguyen Du Vi Nhan*, Dinh Thanh Duc** and Vu Kim Tuan***
* Department of Mathematics,
Quy Nhon University, Binh Dinh, Vietnam.
[email protected]
** Department of Mathematics,
Quy Nhon University, Binh Dinh, Vietnam.
[email protected]
*** Department of Mathematics,
University of West Georgia, Carrollton, GA 30118, USA.
[email protected]
Abstract
By using reverse Hölder’s inequalities we obtain reverse weighted 𝐿𝑝 norm inequalities
for various iterated convolutions.
Key Words: Convolution, integral transform, inverse problem, reverse Hölder inequality,
stability, weighted 𝐿𝑝 inequality, Bernoulli-Euler beam equation, Helmholtz equation, heat
equation.
Mathematics Subject Classification 2000: Primary 44A35, 35A22; Secondary 26D20
1
Introduction
In order to study stability of some inverse problems, in a series of papers, S. Saitoh, M.
Yamamoto and the last author ([10, 11, 12]) derived reverse inequalities for convolution in
some weighted 𝐿𝑝 spaces by using the following reverse Hölder’s inequality:
Proposition 1.1 ([14]; see also [4,
satisfying
pp. 125-126]) For two positive functions 𝑓 and 𝑔
0<π‘šβ‰€
𝑓
≀𝑀 <∞
𝑔
77
(1.1)
on the set 𝑋, and for 𝑝, π‘ž > 1, π‘βˆ’1 + π‘ž βˆ’1 = 1,
(∫
) 𝑝1 (∫
) 1π‘ž
(π‘š)∫
1
1
𝑓 π‘‘πœ‡
π‘”π‘‘πœ‡
≀ 𝐴𝑝,π‘ž
𝑓 𝑝 𝑔 π‘ž π‘‘πœ‡,
𝑀
𝑋
𝑋
𝑋
(1.2)
if the right hand side integral converges. Here
1
𝐴𝑝,π‘ž (𝑑) = 𝑝
βˆ’ 𝑝1 βˆ’ 1π‘ž
π‘ž
π‘‘βˆ’ π‘π‘ž (1 βˆ’ 𝑑)
(
) 𝑝1 (
) 1π‘ž .
1
1
𝑝
π‘ž
1βˆ’π‘‘
1βˆ’π‘‘
Then, by using Proposition 1.1 the first two authors obtained the following
Proposition 1.2 ([3]) Let 𝐹1 and 𝐹2 be positive functions satisfying
1
1
1
1
0 < π‘š1𝑝 ≀ 𝐹1 (𝒛) ≀ 𝑀1𝑝 < ∞, 0 < π‘š2𝑝 ≀ 𝐹2 (𝒛) ≀ 𝑀2𝑝 < ∞, 𝒛 ∈ ℝ𝑛 .
(1.3)
Then for any positive continuous functions 𝜌1 and 𝜌2 on ℝ𝑛 , we have the following reverse
weighted 𝐿𝑝 (𝑝 > 1)βˆ’norm inequality for convolution
1
βˆ’1 ((𝐹1 𝜌1 ) βˆ— (𝐹2 𝜌2 ))(𝜌1 βˆ— 𝜌2 ) 𝑝 𝐿𝑝 (ℝ𝑛 )
)
(
(1.4)
π‘š1 π‘š2
βˆ’π‘›
β‰₯ 𝐴𝑝,π‘ž
βˆ₯𝐹1 βˆ₯𝐿𝑝 (ℝ𝑛 ,𝜌1 ) βˆ₯𝐹2 βˆ₯𝐿𝑝 (ℝ𝑛 ,𝜌2 ).
𝑀1 𝑀2
In [8, 3] we gave various applications of (1.4) from the viewpoint of stability in inverse
problems.
Later in [7], we introduced several iterated convolution type transformations. Using the
Hölder’s inequalities we established weighted 𝐿𝑝 , 𝑝 > 1, norm inequalities for these iterated
convolutions. In this paper, by using the reverse Hölder’s inequalities we will derive reverse
type inequalities for the iterated convolutions.
2
Preliminaries
Throughout this paper, by 𝒙 = (π‘₯1 , ..., π‘₯𝑛 ), π‘₯𝑗 ∈ ℝ, 𝑗 = 1, 2, ..., 𝑛, we denote a vector in ℝ𝑛 .
In particular,
1 = (1, 1, ..., 1), 2 = (2, 2, ..., 2), ...
(2.1)
We shall write 𝒙 > π’š to denote π‘₯𝑗 > 𝑦𝑗 , 𝑗 = 1, 2, ..., 𝑛. Anologously one has to understand
𝒙 β‰₯ π’š, 𝒙 < π’š, 𝒙 ≀ π’š.
We always assume that 𝜌, πœŒπ‘— and πœŒπ‘—,π‘Ÿ (𝑗 = 1, 2, ..., π‘š; π‘Ÿ = 1, 2, ..., 𝑠)βˆ’ the weight functions,
to be nonnegative, and 1 < 𝑝 < ∞. When we write 𝐴 ≀ 𝐡, we understand that if 𝐡 is
finite, then 𝐴 is also finite, and bounded above by 𝐡.
We shall denote some subsets of ℝ𝑛
ℝ𝑛+ (𝒕) = {𝒙 : 𝒙 ∈ ℝ𝑛 , 0 < 𝒙 < 𝒕}
(2.2)
ℝ𝑛𝒕 = {𝒙 : 𝒙 ∈ ℝ𝑛 , 𝒕 < 𝒙 < ∞} .
(2.3)
Then, by using Proposition 1.1 we obtain the following lemma
78
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
79
Lemma 2.1 Let Ξ© be a measurable set in ℝ𝑛 and 𝜌 be a positive function belonging to 𝐿1 (Ξ©).
For a positive function 𝑓 satisfying
0 < π‘š1/𝑝 ≀ 𝑓 (𝒙) ≀ 𝑀 1/𝑝 < ∞
(2.4)
on the set Ξ©, and for 𝑝, π‘ž > 1, π‘βˆ’1 + π‘ž βˆ’1 = 1,
) 𝑝1 (∫
) 1π‘ž
(π‘š)∫
𝑛
[𝑓 (𝒙)] 𝜌(𝒙)𝑑𝒙
𝜌(𝒙)𝑑𝒙
≀ 𝐴𝑝,π‘ž
𝑓 (𝒙)𝜌(𝒙)𝑑𝒙.
𝑀
Ξ©
Ξ©
Ξ©
(∫
𝑝
(2.5)
Let 𝐷 be a domain in ℝ𝑛 , 𝐹𝑖 (.) : 𝐷 β†’ ℝ, 𝑖 = 1, β‹… β‹… β‹… , π‘ž, and πœ‘(., .), πœ“(., .) : 𝐷 × π· β†’ 𝐷.
Then, we introduce a convolution type integral, called the πœ‘βˆ’ convolution
Definition 2.2 ([7]) The πœ‘βˆ’ convolution of 𝐹1 and 𝐹2 , denoted by 𝐹1 βˆ—πœ‘ 𝐹2 , is defined by
∫
(𝐹1 βˆ—πœ‘ 𝐹2 )(𝜼) =
𝐹1 (𝝃)𝐹2 (πœ‘(𝝃, 𝜼))βˆ£πœ‘πœΌ (𝝃, 𝜼)βˆ£π‘‘πƒ,
(2.6)
𝐷
when this integral exists. Here,
(
βˆ£πœ‘πœΌ (𝝃, 𝜼)∣ := det
)
βˆ‚
πœ‘(𝝃, 𝜼)
βˆ‚πœΌ
is the Jacobian of the transformation 𝜼 β†’ πœ‘(., 𝜼).
Example 2.3 The following convolutions are particular cases of the πœ‘βˆ’convolution ([1],
[2]):
βˆ™ The Fourier convolution
∫
𝐹1 (π’š)𝐹2 (𝒙 βˆ’ π’š)π‘‘π’š,
𝐹1 βˆ—π”‰ 𝐹2 :=
𝒙 ∈ ℝ𝑛 .
(2.7)
ℝ𝑛
βˆ™ The Laplace convolution
∫
𝐹1 (𝝉 )𝐹2 (𝒕 βˆ’ 𝝉 )𝑑𝝉 ,
𝒕 ∈ ℝ𝑛+ .
(2.8)
𝐹1 (𝒙)𝐹2 (𝒕/𝒙)π’™βˆ’1 𝑑𝒙,
𝒕 ∈ ℝ𝑛+ .
(2.9)
𝐹1 βˆ—π” 𝐹2 :=
ℝ𝑛
+ (𝒕)
βˆ™ The Mellin convolution
∫
𝐹1 βˆ—π” 𝐹2 :=
ℝ𝑛
+
Definition 2.4 ([7]) Let 𝐺𝑗 (., .) : ℝ𝑛 × β„π‘š
+ β†’ ℝ. The Fourier-Laplace convolution of
𝐺1 (𝝉 , 𝜻) and 𝐺2 (𝝉 , 𝜻) is defined by
∫
∫
𝑑𝝉
(𝐺1 βˆ—π”‰,𝔏 𝐺2 )(𝝃, 𝜼) :=
𝐺1 (𝝉 , 𝜻)𝐺2 (𝝃 βˆ’ 𝝉 , 𝜼 βˆ’ 𝜻)π‘‘πœ».
(2.10)
ℝ𝑛
+ (𝝃)
ℝ𝑛
79
Remark 2.5 We observe that the Fourier-Laplace convolution is a special case of the πœ‘ convolution.
By Lemma 2.1, we have
Lemma 2.6 Let 𝜌1 and 𝜌2 be two positive functions on 𝐷 such that the convolution 𝜌1 βˆ—πœ‘ 𝜌2
exists. For two positive functions 𝐹1 and 𝐹2 satisfying
1
1
0 < π‘šπ‘—π‘ ≀ 𝐹𝑗 ≀ 𝑀𝑗𝑝 < ∞,
𝑗 = 1, 2,
(2.11)
on the set 𝐷, and for 𝑝 > 1,
𝐴𝑛𝑝
𝑝,π‘ž
(
π‘š1 π‘š2
𝑀1 𝑀2
)
[((𝐹1 𝜌1 ) βˆ—πœ‘ (𝐹2 𝜌2 ))(𝜼)]𝑝
π‘βˆ’1
β‰₯ [(𝜌1 βˆ—πœ‘ 𝜌2 )(𝜼)]
((𝐹1𝑝 𝜌1 )
(2.12)
βˆ—πœ‘ (𝐹2𝑝 𝜌2 ))(𝜼)
for all 𝜼 ∈ 𝐷.
¿From the πœ‘βˆ’ convolution and the πœ“βˆ’ convolution, we get the following definition
Definition 2.7 ([7]) Under suitable hypotheses for the πœ‘βˆ’ convolution 𝐹1 βˆ—πœ‘ 𝐹2 and the πœ“βˆ’
convolution 𝐹1 βˆ—πœ“ 𝐹2 , the (πœ‘ + πœ“)βˆ’ convolution, denoted by 𝐹1 βˆ—πœ‘+πœ“ 𝐹2 , is defined by
∫
𝐹1 (𝝉 ) [𝐹2 (πœ‘(𝝉 , 𝝃))βˆ£πœ‘πƒ (𝝉 , 𝝃)∣ + 𝐹2 (πœ“(𝝉 , 𝝃))βˆ£πœ“πƒ (𝝉 , 𝝃)∣] 𝑑𝝉 .
(2.13)
(𝐹1 βˆ—πœ‘+πœ“ 𝐹2 )(𝝃) :=
𝐷
Example 2.8 The Fourier cosine convolution (see [13])
∫
1
𝐹1 βˆ—π”‰π‘ 𝐹2 (𝒙) := √ 𝑛
𝐹1 (π’š)[𝐹2 (𝒙 + π’š) + 𝐹2 (βˆ£π’™ βˆ’ π’šβˆ£)]π‘‘π’š
2πœ‹ ℝ𝑛+
(2.14)
is a special case of the (πœ‘ + πœ“)βˆ’convolution.
Then, we have
Lemma 2.9 Let 𝜌1 and 𝜌2 be two positive functions on 𝐷 such that the convolution 𝜌1 βˆ—πœ‘+πœ“ 𝜌2
exists. For two positive functions 𝐹1 and 𝐹2 satisfying
1
1
0 < π‘šπ‘—π‘ ≀ 𝐹𝑗 ≀ 𝑀𝑗𝑝 < ∞
on the set 𝐷, and for 𝑝 > 1,
(
)
(
)
π‘š1 π‘š2
π‘š2
𝑛𝑝
𝑝
𝐴𝑝,π‘ž
𝐴𝑝,π‘ž
[((𝐹1 𝜌1 ) βˆ—πœ‘+πœ“ (𝐹2 𝜌2 ))(𝜼)]𝑝
𝑀1 𝑀2
𝑀2
π‘βˆ’1
β‰₯ [(𝜌1 βˆ—πœ‘+πœ“ 𝜌2 )(𝜼)]
((𝐹1𝑝 𝜌1 )
for all 𝜼 ∈ 𝐷.
80
βˆ—πœ‘+πœ“ (𝐹2𝑝 𝜌2 ))(𝜼)
(2.15)
(2.16)
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
81
Proof. Application of the reverse Hölder’s inequality gives
(
)
π‘š2
𝐴𝑝,π‘ž
[𝐹2 (πœ‘(𝝃, 𝜼))𝜌2 (πœ‘(𝝃, 𝜼))βˆ£πœ‘πœΌ (𝝃, 𝜼)∣ + 𝐹2 (πœ“(𝝃, 𝜼))𝜌2 (πœ“(𝝃, 𝜼))βˆ£πœ“πœΌ (𝝃, 𝜼)∣]
𝑀2
1
β‰₯ [𝐹2𝑝 (πœ‘(𝝃, 𝜼))𝜌2 (πœ‘(𝝃, 𝜼))βˆ£πœ‘πœΌ (𝝃, 𝜼)∣ + 𝐹2𝑝 (πœ“(𝝃, 𝜼))𝜌2 (πœ“(𝝃, 𝜼))βˆ£πœ“πœΌ (𝝃, 𝜼)∣] 𝑝
× [𝜌2 (πœ‘(𝝃, 𝜼))βˆ£πœ‘πœΌ (𝝃, 𝜼)∣ + 𝜌2 (πœ“(𝝃, 𝜼))βˆ£πœ“πœΌ (𝝃, 𝜼)∣]
π‘βˆ’1
𝑝
.
Therefore,
)
(
)
π‘š1 π‘š2
π‘š2
𝐴𝑝,π‘ž
[((𝐹1 𝜌1 ) βˆ—πœ‘+πœ“ (𝐹2 𝜌2 ))(𝜼)]
𝑀1 𝑀2
𝑀2
)∫
(
π‘š1 π‘š2
β‰₯ 𝐴𝑛𝑝,π‘ž
𝐹1 (𝝃)𝜌1 (𝝃)
𝑀1 𝑀2
𝐷
𝐴𝑛𝑝,π‘ž
(
1
× [𝐹2𝑝 (πœ‘(𝝃, 𝜼))𝜌2 (πœ‘(𝝃, 𝜼))βˆ£πœ‘πœΌ (𝝃, 𝜼)∣ + 𝐹2𝑝 (πœ“(𝝃, 𝜼))𝜌2 (πœ“(𝝃, 𝜼))βˆ£πœ“πœΌ (𝝃, 𝜼)∣] 𝑝
× [𝜌2 (πœ‘(𝝃, 𝜼))βˆ£πœ‘πœΌ (𝝃, 𝜼)∣ + 𝜌2 (πœ“(𝝃, 𝜼))βˆ£πœ“πœΌ (𝝃, 𝜼)∣]
π‘βˆ’1
𝑝
𝑑𝝃,
which is, by Lemma 2.1,
β‰₯ [(𝜌1 βˆ—πœ‘+πœ“ 𝜌2 )(𝜼)]
π‘βˆ’1
𝑝
1
[((𝐹1𝑝 𝜌1 ) βˆ—πœ‘+πœ“ (𝐹2𝑝 𝜌2 ))(𝜼)] 𝑝 .
Thus, the proof is complete. β–‘
Definition 2.10 ([7]) For the πœ‘βˆ’ convolution, define the πœ‘βˆ’ convolution product
by
[π‘šβˆ’1
]
π‘š
∏
∏
βˆ—πœ‘ 𝐹𝑗 (𝝃 π‘š ) =
βˆ—πœ‘ 𝐹𝑗 βˆ—πœ‘ πΉπ‘š (𝝃 π‘š ).
𝑗=1
3
βˆπ‘š
𝑗=1
βˆ—πœ‘ 𝐹𝑗
(2.17)
𝑗=1
Reverse weighted 𝐿𝑝 inequalities in the iterated convolutions
Our main inequality is the following:
Theorem 3.1 Let functions πœŒπ‘— , 𝑗 = 1, 2, ..., π‘š, be positive on 𝐷 such that the convolution
βˆπ‘š
𝑗=1 βˆ—πœ‘ πœŒπ‘— . For π‘š positive functions 𝐹𝑗 satisfying
1
1
0 < π‘šπ‘—π‘ ≀ 𝐹𝑗 ≀ 𝑀𝑗𝑝 < ∞
on the set 𝐷(𝑗 = 1, 2, ..., π‘š), and for 𝑝 > 1,
(
)( π‘š
) 𝑝1 βˆ’1 ∏
π‘š
∏
βˆ—πœ‘ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
βˆ—πœ‘ πœŒπ‘— (𝝃 π‘š )
𝑗=1
𝑗=1
𝐿𝑝 (𝐷)
{
( 𝑖
)} π‘š
π‘š
∏
∏ π‘šπ‘—
∏
β‰₯
π΄βˆ’π‘›
βˆ₯𝐹𝑗 βˆ₯𝐿𝑝 (𝐷,πœŒπ‘— ) .
𝑝,π‘ž
𝑀𝑗
𝑖=2
𝑗=1
𝑗=1
81
(3.1)
(3.2)
Inequality (3.2) and others should be understood in the sense that if the left hand side is
finite, then so is the right hand side, and in this case the inequality holds.
Corollary 3.2 For positive functions πœŒπ‘—,π‘Ÿ (𝑗 = 1, 2, ..., π‘š; π‘Ÿ = 1, 2, ..., 𝑠) on 𝐷 such that the
∏
convolution π‘š
𝑗=1 βˆ—π”‰ πœŒπ‘—,π‘Ÿ exists and for positive functions 𝐹𝑗,π‘Ÿ satisfying
1
1
𝑝
𝑝
0 < π‘šπ‘—,π‘Ÿ
≀ 𝐹𝑗,π‘Ÿ ≀ 𝑀𝑗,π‘Ÿ
<∞
(3.3)
on the set 𝐷(𝑗 = 1, 2, ..., π‘š; π‘Ÿ = 1, 2, ..., 𝑠), and for 𝑝 > 1, we have
(
)( 𝑠 π‘š
) 𝑝1 βˆ’1 βˆ‘
𝑝
π‘š
βˆ‘βˆ
𝑠 ∏
βˆ—
(𝐹
𝜌
)
βˆ—
𝜌
πœ‘
𝑗,π‘Ÿ
𝑗,π‘Ÿ
πœ‘
𝑗,π‘Ÿ
π‘Ÿ=1 𝑗=1
π‘Ÿ=1 𝑗=1
𝐿𝑝 (𝐷)
{π‘š
) π‘š
}
( 𝑖
)βˆ‘
(
𝑠
∏
∏ π‘šπ‘—,π‘Ÿ ∏
π‘š0
𝑝
βˆ’π‘
βˆ’π‘›π‘
β‰₯ 𝐴𝑝,π‘ž
𝐴
βˆ₯𝐹𝑗,π‘Ÿ βˆ₯𝐿𝑝 (𝐷,πœŒπ‘—,π‘Ÿ ) ,
𝑀0 π‘Ÿ=1 𝑖=2 𝑝,π‘ž 𝑗=1 𝑀𝑗,π‘Ÿ 𝑗=1
(3.4)
where
π‘š0 = min
π‘Ÿ
{π‘š
∏
}
π‘šπ‘—,π‘Ÿ
,
𝑀0 = max
{π‘š
∏
π‘Ÿ
𝑗=1
}
𝑀𝑗,π‘Ÿ
.
𝑗=1
Proof of Theorem 3.1 We first proof the following inequality
(π‘š
∏
)𝑝 ( π‘š
)1βˆ’π‘
∏
βˆ—πœ‘ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
βˆ—πœ‘ πœŒπ‘— (𝝃 π‘š )
𝑗=1
β‰₯
𝑗=1
π‘š
∏
{
(
π΄βˆ’π‘›π‘
𝑝,π‘ž
𝑖=2
𝑖
∏
π‘šπ‘—
𝑀𝑗
𝑗=1
)}
π‘š
∏
(3.5)
βˆ—πœ‘ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š ),
𝝃 π‘š ∈ 𝐷.
𝑗=1
We use induction on π‘š. When π‘š = 2, the inequality (3.5) is reduced to Lemma 2.1. Now
suppose (3.5) holds for some integer π‘š β‰₯ 2. We claim that it also holds for π‘š + 1. For all
𝝃 π‘š+1 , put
π‘“πƒπ‘š+1 (𝝃 π‘š ) =
{π‘š
∏
} π‘βˆ’1
𝑝
βˆ—πœ‘ πœŒπ‘— (𝝃 π‘š )πœŒπ‘š+1 (πœ‘(𝝃 π‘š , 𝝃 π‘š+1 ))πœ‘πƒπ‘š+1 (𝝃 π‘š , 𝝃 π‘š+1 )
𝑗=1
and
π‘”πƒπ‘š+1 (𝝃 π‘š ) =
{π‘š
∏
} 𝑝1
βˆ—πœ‘ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š )πœŒπ‘š+1 (πœ‘(𝝃 π‘š , 𝝃 π‘š+1 ))πœ‘πƒπ‘š+1 (𝝃 π‘š , 𝝃 π‘š+1 )
𝑗=1
× πΉπ‘š+1 (πœ‘(𝝃 π‘š , 𝝃 π‘š+1 )).
82
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
By induction hypothesis, we arrive at
( 𝑖
)} π‘š+1
{
π‘š
∏
∏ π‘šπ‘—
∏
𝐴𝑛𝑝,π‘ž
βˆ—πœ‘ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š+1 )
𝑀𝑗
𝑖=2
𝑗=1
𝑗=1
)} ( π‘š
)
{
( 𝑖
π‘š
∏
∏
∏ π‘šπ‘—
βˆ—πœ‘ (𝐹𝑗 πœŒπ‘— ) βˆ—πœ‘ (πΉπ‘š+1 πœŒπ‘š+1 ) (𝝃 π‘š+1 )
=
𝐴𝑛𝑝,π‘ž
𝑀𝑗
𝑗=1
𝑖=2
𝑗=1
∫
π‘“πƒπ‘š+1 (𝝃 π‘š )π‘”πƒπ‘š+1 (𝝃 π‘š )𝑑𝝃 π‘š .
β‰₯
𝐷
The condition (3.1) implies
π‘š+1
∏
π‘šπ‘— ≀
𝑗=1
π‘”πƒπ‘π‘š+1 (𝝃 π‘š )
π‘“πƒπ‘žπ‘š+1 (𝝃 π‘š )
≀
π‘š+1
∏
𝑀𝑗 ,
𝝃 π‘š ∈ 𝐷.
𝑗=1
Hence, one can apply the reverse Hölder inequality to π‘“πƒπ‘š+1 (𝝃 π‘š ) and π‘”πƒπ‘š+1 (𝝃 π‘š ) to obtain
}𝑝
)
{
(π‘š+1
∏ π‘šπ‘— ∫
π‘“πƒπ‘š+1 (𝝃 π‘š )π‘”πƒπ‘š+1 (𝝃 π‘š )𝑑𝝃 π‘š
𝐴𝑛𝑝,π‘ž
𝑀
𝑗
𝐷
𝑗=1
}π‘βˆ’1 ∫
{∫
π‘ž
[π‘”πƒπ‘š+1 (𝝃 π‘š )]𝑝 𝑑𝝃 π‘š
[π‘“πƒπ‘š+1 (𝝃 π‘š )] 𝑑𝝃 π‘š
β‰₯
𝐷
𝐷
=
{π‘š+1
∏
βˆ—πœ‘ πœŒπ‘— (𝝃 π‘š+1 )
}π‘βˆ’1 π‘š+1
∏
𝑗=1
βˆ—πœ‘ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š+1 )
𝑗=1
and so the assertion follows.
Now, by taking integration of both sides of (3.5) with respect to 𝝃 π‘š on 𝐷 we obtain the
inequality
)𝑝 ( π‘š
)1βˆ’π‘
∫ (∏
π‘š
∏
βˆ—πœ‘ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
βˆ—πœ‘ πœŒπ‘— (𝝃 π‘š )
𝑑𝝃 π‘š
𝐷
β‰₯
𝑗=1
π‘š
∏
𝑖=2
𝑗=1
{
( 𝑖
)} ∫ π‘š
∏ π‘šπ‘—
∏
π΄βˆ’π‘›π‘
βˆ—πœ‘ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š )𝑑𝝃 π‘š .
𝑝,π‘ž
𝑀𝑗
𝐷 𝑗=1
𝑗=1
Here we have, by definition,
∫ ∏
π‘š
βˆ—πœ‘ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š )𝑑𝝃 π‘š
𝐷 𝑗=1
∫
=
∫
𝑑𝝃 π‘š
𝐷
×
π·πƒπœ‘
π‘šβˆ’1
[π‘šβˆ’1
∏
]
βˆ—πœ‘ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘šβˆ’1 )
𝑗=1
πΉπ‘šπ‘ (πœ‘(𝝃 π‘šβˆ’1 , 𝝃 π‘š ))πœŒπ‘š (πœ‘(𝝃 π‘šβˆ’1 , 𝝃 π‘š ))βˆ£πœ‘πƒπ‘š (𝝃 π‘šβˆ’1 , 𝝃 π‘š )βˆ£π‘‘πƒ π‘šβˆ’1 ,
which is, by the Fubini’s theorem and the change of variables π’™π‘š = πœ‘(𝝃 π‘šβˆ’1 , 𝝃 π‘š ),
]
∫ [π‘šβˆ’1
∫
∏
𝑝
=
βˆ—πœ‘ (βˆ£πΉπ‘— ∣ πœŒπ‘— )(𝝃 π‘šβˆ’1 ) 𝑑𝝃 π‘šβˆ’1
βˆ£πΉπ‘š (π’™π‘š )βˆ£π‘ πœŒπ‘š (π’™π‘š )π‘‘π’™π‘š .
𝐷
𝐷
𝑗=1
83
83
Therefore,
∫ (∏
π‘š
𝐷
β‰₯
)𝑝 (
βˆ—πœ‘ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
𝑗=1
π‘š
∏
π‘š
∏
)1βˆ’π‘
βˆ—πœ‘ πœŒπ‘— (𝝃 π‘š )
𝑑𝝃 π‘š
𝑗=1
(
{
π΄βˆ’π‘›π‘
𝑝,π‘ž
𝑖=2
𝑖
∏
π‘šπ‘—
𝑀𝑗
𝑗=1
)}
(3.6)
π‘š ∫
∏
𝐹𝑗𝑝 (𝒙)πœŒπ‘— (𝒙)𝑑𝒙.
𝐷
𝑗=1
Raising both sides of the inequality (3.6) to power 1/𝑝 yields the inequality (3.1). β–‘
Proof of Corollary 3.2 For every 𝝃 π‘š ∈ 𝐷, take
π‘Žπ‘Ÿ =
(π‘š
∏
)( π‘š
)βˆ’1/π‘ž
∏
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
𝑗=1
𝑗=1
and
π‘π‘Ÿ =
(π‘š
∏
)1/π‘ž
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
,
π‘Ÿ = 1, 2, ..., 𝑠.
𝑗=1
The condition (3.3) implies
π‘š0 ≀
π‘š
∏
π‘š
π‘šπ‘—,π‘Ÿ
𝑗=1
π‘Žπ‘ ∏
𝑀𝑗,π‘Ÿ ≀ 𝑀0 ,
≀ π‘žπ‘Ÿ ≀
π‘π‘Ÿ
𝑗=1
π‘Ÿ = 1, 2, ..., 𝑠.
Hence, we obtain
(
)( 𝑠
)π‘βˆ’1
)𝑝
(
) (βˆ‘
𝑠
βˆ‘
π‘š
0
π‘Žπ‘π‘Ÿ
π‘π‘žπ‘Ÿ
≀ 𝐴𝑝𝑝,π‘ž
π‘Žπ‘Ÿ 𝑏 π‘Ÿ
𝑀0
π‘Ÿ=1
π‘Ÿ=1
π‘Ÿ=1
𝑠
βˆ‘
or, equivalent
(π‘š
𝑠
βˆ‘
∏
π‘Ÿ=1
)𝑝 (
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
𝑗=1
≀ 𝐴𝑝𝑝,π‘ž
(
π‘š
∏
)1βˆ’π‘ { 𝑠 π‘š
}π‘βˆ’1
βˆ‘βˆ
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
π‘Ÿ=1 𝑗=1
𝑗=1
π‘š0
𝑀0
) (βˆ‘
𝑠 ∏
π‘š
)𝑝
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
.
π‘Ÿ=1 𝑗=1
Therefore,
(
𝑠 ∏
π‘š
βˆ‘
)𝑝 (
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
π‘Ÿ=1 𝑗=1
β‰₯ π΄βˆ’π‘
𝑝,π‘ž
(
𝑠 ∏
π‘š
βˆ‘
)1βˆ’π‘
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
π‘Ÿ=1 𝑗=1
π‘š0
𝑀0
(π‘š
)βˆ‘
𝑠
∏
π‘Ÿ=1
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
𝑗=1
)𝑝 ( π‘š
∏
𝑗=1
84
(3.7)
)1βˆ’π‘
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
.
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
85
Now, by taking integration of both sides of (3.7) with respect to 𝝃 π‘š on 𝐷 we obtain
)𝑝 ( 𝑠 π‘š
)1βˆ’π‘
∫ (βˆ‘
𝑠 ∏
π‘š
βˆ‘βˆ
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
𝑑𝝃 π‘š
𝐷
π‘Ÿ=1 𝑗=1
β‰₯ π΄βˆ’π‘
𝑝,π‘ž
= π΄βˆ’π‘
𝑝,π‘ž
(
𝑀0
(
π‘Ÿ=1 𝑗=1
(π‘š
)∫ βˆ‘
𝑠
∏
π‘š0
𝐷 π‘Ÿ=1
)𝑝 (
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
π‘š
∏
𝑗=1
𝑗=1
) 𝑠 ∫ (∏
π‘š
π‘š0 βˆ‘
)𝑝 ( π‘š
∏
𝑀0
π‘Ÿ=1
𝐷
βˆ—πœ‘ (𝐹𝑗,π‘Ÿ πœŒπ‘—,π‘Ÿ )(𝝃 π‘š )
𝑗=1
)1βˆ’π‘
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
𝑑𝝃 π‘š
)1βˆ’π‘
βˆ—πœ‘ πœŒπ‘—,π‘Ÿ (𝝃 π‘š )
𝑑𝝃 π‘š ,
𝑗=1
which is, by Theorem 3.1,
{π‘š
( 𝑖
) π‘š
}
)βˆ‘
(
𝑠
∏
∏
∏
π‘š
π‘š
0
𝑗,π‘Ÿ
π΄βˆ’π‘π‘›
βˆ₯𝐹𝑗,π‘Ÿ βˆ₯𝑝𝐿𝑝 (𝐷,πœŒπ‘—,π‘Ÿ ) ,
β‰₯ π΄βˆ’π‘
𝑝,π‘ž
𝑀0 π‘Ÿ=1 𝑖=2 𝑝,π‘ž 𝑗=1 𝑀𝑗,π‘Ÿ 𝑗=1
that completes the proof of (3.4). β–‘
¿From Theorem 3.1, we obtain an inequality for the iterated Fourier-Laplace convolution
here.
Corollary 3.3 Let 𝐹𝑗 (𝒙, 𝑑), 𝑗 = 1, 2, ..., π‘š, be positive functions satisfying
1
1
0 < π‘šπ‘—π‘ ≀ 𝐹𝑗 ≀ 𝑀𝑗𝑝 < ∞
(3.8)
on the set ℝ𝑛 × β„+ . Then for any positive functions πœŒπ‘— on ℝ𝑛 × β„+ such that there exists
βˆπ‘š
βˆπ‘š
𝑗=1 βˆ—π”‰,𝔏 , we have the inequality
𝑗=1 βˆ—π”‰,𝔏 , and for the iterated Fourier Laplace convolution
(
)( π‘š
) 𝑝1 βˆ’1 π‘š
∏
∏
βˆ—
(𝐹
𝜌
)
βˆ—
𝜌
𝔉,𝔏
𝑗
𝑗
𝔉,𝔏
𝑗
𝑗=1
𝑗=1
𝐿𝑝 (ℝ𝑛 ×ℝ+ )
(3.9)
{
(
)}
βˆ’(𝑛+1) π‘š
π‘š
𝑖
∏
∏
∏
π‘šπ‘—
β‰₯
𝐴𝑝,π‘ž
βˆ₯𝐹𝑗 βˆ₯𝐿𝑝 (ℝ𝑛 ×ℝ+ ,πœŒπ‘— ) .
𝑀
𝑗
𝑖=2
𝑗=1
𝑗=1
Remark 3.4 In formula 3.9, when π‘š = 2 replacing 𝜌2 by 1, and 𝐹2 (𝒙 βˆ’ 𝝃, 𝑑 βˆ’ 𝜏 ) by 𝐺(𝒙 βˆ’
𝝃, 𝑑 βˆ’ 𝜏 ), and integrating with respect to 𝒙 from 𝒂 to 𝒃 and respect to 𝑑 from 0 to 𝑇 (> 0), we
arrive at the following inequality
(
)𝑝
∫ 𝑇 ∫ 𝒃 ∫ 𝑑 ∫ 𝑛 𝐹 (𝝃, 𝜏 )𝜌(𝝃, 𝜏 )𝐺(𝒙 βˆ’ 𝝃, 𝑑 βˆ’ 𝜏 )π‘‘πƒπ‘‘πœ
0 ℝ
𝑑𝒙
𝑑𝑑
(∫ ∫
)π‘βˆ’1
𝑑
0
𝒂
𝜌(𝝃, 𝜏 )π‘‘πƒπ‘‘πœ
(3.10)
0 ℝ𝑛
∫
∫ 𝑇 βˆ’πœ ∫ π’ƒβˆ’πƒ
{
( π‘š )}βˆ’(𝑛+1)𝑝 ∫ 𝑇
β‰₯ 𝐴𝑝,π‘ž
π‘‘πœ
𝐹 𝑝 (𝝃, 𝜏 )𝜌(𝝃, 𝜏 )𝑑𝝃
𝑑𝑑
𝐺𝑝 (𝒙, 𝑑)𝑑𝒙,
𝑀
0
ℝ𝑛
0
π’‚βˆ’πƒ
if positive functions 𝜌, 𝐹 and 𝐺 satisfy
1
1
0 < π‘š 𝑝 ≀ 𝐹 (𝝃, 𝑑)𝐺(𝒙 βˆ’ 𝝃, 𝑑 βˆ’ 𝜏 ) < 𝑀 𝑝 < ∞
for all (𝒙, 𝑑) ∈ [𝒂, 𝒃] × [0, 𝑇 ], (𝝃, 𝜏 ) ∈ ℝ𝑛 × [0, 𝑇 ].
85
(3.11)
Theorem 3.5 Let 𝑝 β‰₯ 1, 0 < 𝜢 < 𝑻 1 , 0 < 𝑻 𝑖 (𝑖 = 2, ..., π‘š), and 𝐹𝑗 ∈ 𝐿∞ (0, 𝑻 1 + β‹… β‹… β‹… +
𝑻 π‘š )(𝑗 = 1, 2, ..., π‘š), satisfy
0 ≀ 𝐹𝑗 ≀ 𝑀 < ∞,
0<𝒕<
π‘š
βˆ‘
𝑻 𝑗.
(3.12)
𝑗=1
Then
π‘š(1βˆ’π‘)
𝑝
𝑀
π‘š
∏
βˆ₯𝐹1 βˆ₯𝐿𝑝 (𝜢,𝑻 1 )
βˆ₯𝐹𝑗 βˆ₯𝐿𝑝 (0,𝑻 𝑗 )
𝑗=2
(∫
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
π’•π‘š
∫
≀
𝒕2
∫
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
π‘‘π’•π‘š
𝐹1 (𝒕1 )
𝜢
𝜢
𝜢
π‘š
∏
(3.13)
)1/𝑝
𝐹𝑗 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1
.
𝑗=2
In particular; for 𝜢 = 0, we have
𝑀
π‘š(1βˆ’π‘)
𝑝
π‘š
∏
(∫
βˆ₯𝐹𝑗 βˆ₯𝐿𝑝 (0,𝑻 𝑗 ) ≀
π‘š
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š ∏
0
𝑗=1
π’•π‘š
𝒕2
∫
𝐹1𝑝 (𝒕1 )
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
𝜢
𝜢
∫
π’•π‘š
𝜢
≀𝑀
∫
(3.14)
βˆ‘π‘š
𝑗=1
𝑻 𝑗 , we have
𝐹𝑗𝑝 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1
𝒕2
𝐹1π‘βˆ’1 (𝒕1 )
𝜢
π‘š(π‘βˆ’1)
.
𝑗=2
∫
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
=
π‘š
∏
βˆ—π” 𝐹𝑗 (𝒕)𝑑𝒕
𝑗=1
Proof. Since 0 ≀ 𝐹𝑗 (𝑗 = 1, 2, ..., π‘š) ≀ 𝑀 for 0 < 𝒕 <
∫
)1/𝑝
π‘š
∏
πΉπ‘—π‘βˆ’1 (𝒕𝑗
βˆ’ π’•π‘—βˆ’1 )𝐹1 (𝒕1 )
𝑗=2
π’•π‘š
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
π‘š
∏
𝐹1 (𝒕1 )
𝜢
𝜢
𝐹𝑗 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1
𝑗=2
𝒕2
∫
π‘š
∏
𝐹𝑗 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1 .
𝑗=2
Hence
∫
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
∫
π’•π‘š
≀𝑀
𝜢
π‘š(π‘βˆ’1)
∫
𝒕2
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
π‘‘π’•π‘š
𝜢
∫
π‘š
∏
𝐹1𝑝 (𝒕1 )
𝜢
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
∫
𝑗=2
π’•π‘š
∫
𝒕2
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
π‘‘π’•π‘š
𝜢
𝐹𝑗𝑝 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1
𝜢
𝐹1 (𝒕1 )
𝜢
π‘š
∏
(3.15)
𝐹𝑗 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1 .
𝑗=2
On the other hand, let
⎧
⎨1 for π‘₯ β‰₯ 0
πœƒ(π‘₯) =
⎩0 for π‘₯ < 0,
and let
∫
π’•π‘šβˆ’1
∫
𝒕2
π‘‘π’•π‘šβˆ’2 β‹… β‹… β‹…
𝐺(π’•π‘šβˆ’1 ) =
𝜢
𝜢
86
𝐹1𝑝 (𝒕1 )
π‘šβˆ’1
∏
𝑗=2
𝐹𝑗𝑝 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1 ,
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
87
we have
∫
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
∫
π’•π‘š
∫
𝜢
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š ∫
𝜢
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
π‘š
∏
𝐹𝑗𝑝 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1
𝑗=2
π’•π‘š
=
∫
𝐹1𝑝 (𝒕1 )
𝜢
𝜢
∫
𝒕2
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
π‘‘π’•π‘š
𝐺(π’•π‘šβˆ’1 )πΉπ‘šπ‘ (π’•π‘š βˆ’ π’•π‘šβˆ’1 )π‘‘π’•π‘šβˆ’1 π‘‘π’•π‘š
𝜢
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
∫
𝐺(π’•π‘šβˆ’1 )πΉπ‘šπ‘ (π’•π‘š βˆ’ π’•π‘šβˆ’1 )πœƒ(π’•π‘š βˆ’ π’•π‘šβˆ’1 )π‘‘π’•π‘šβˆ’1 π‘‘π’•π‘š ,
=
𝜢
𝜢
which is, by Fubini’s theorem and the change of variables 𝒙 = π’•π‘š βˆ’ π’•π‘šβˆ’1 ,
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
∫
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š βˆ’π’•π‘šβˆ’1
(∫
πΉπ‘šπ‘ (𝒙)𝑑𝒙
)
𝐺(π’•π‘šβˆ’1 )π‘‘π’•π‘šβˆ’1
)
(∫ 𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š βˆ’π’•π‘šβˆ’1
𝑝
πΉπ‘š (𝒙)𝑑𝒙 𝐺(π’•π‘šβˆ’1 )π‘‘π’•π‘šβˆ’1
β‰₯
0
𝜢
)
∫ 𝑻 1 +β‹…β‹…β‹…+𝑻 π‘šβˆ’1 (∫ 𝑻 π‘š
𝑝
πΉπ‘š (𝒙)𝑑𝒙 𝐺(π’•π‘šβˆ’1 )π‘‘π’•π‘šβˆ’1
β‰₯
0
𝜢
∫ 𝑻 1 +β‹…β‹…β‹…+𝑻 π‘šβˆ’1
∫ π‘»π‘š
=
𝐺(π’•π‘šβˆ’1 )π‘‘π’•π‘šβˆ’1
πΉπ‘šπ‘ (𝒙)𝑑𝒙,
=
𝜢
∫ 𝑻 1 +β‹…β‹…β‹…+𝑻 π‘šβˆ’1
0
𝜢
0
and so,
∫
𝑻 1 +β‹…β‹…β‹…+𝑻 π‘š
∫
π’•π‘š
∫
π‘‘π’•π‘šβˆ’1 β‹… β‹… β‹…
π‘‘π’•π‘š
𝜢
𝜢
∫
𝑻1
β‰₯
𝜢
𝐹1𝑝 (𝒙)𝑑𝒙
𝒕2
𝜢
π‘š ∫ 𝑻𝑗
∏
𝑗=2
𝐹1𝑝 (𝒕1 )
π‘š
∏
𝐹𝑗𝑝 (𝒕𝑗 βˆ’ π’•π‘—βˆ’1 )𝑑𝒕1
𝑗=2
𝐹𝑗𝑝 (𝒙)𝑑𝒙.
0
Combining with (3.15), we have the desired inequality (3.13). β–‘
We next obtain the inequalities for the (πœ‘ + πœ“)βˆ’convolution.
Theorem 3.6 Let functions πœŒπ‘— , 𝑗 = 1, 2, ..., π‘š, be positive on 𝐷 such that the convolution
βˆπ‘š
𝑗=1 βˆ—πœ‘+πœ“ πœŒπ‘— exists. For positive functions 𝐹𝑗 satisfying
1
1
0 < π‘šπ‘—π‘ ≀ 𝐹𝑗 ≀ 𝑀𝑗𝑝 < ∞
on the set 𝐷, 𝑗 = 1, 2, ..., π‘š, and for 𝑝 > 1,
(
)( π‘š
) 𝑝1 βˆ’1 ∏
π‘š
∏
βˆ—πœ‘+πœ“ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
βˆ—πœ‘+πœ“ πœŒπ‘— (𝝃 π‘š )
𝑗=1
𝑗=1
𝐿𝑝 (𝐷)
{
( 𝑖
)} π‘š
(
)
π‘š
π‘š
∏ π‘šπ‘—
∏
π‘šβˆ’1 ∏
π‘šπ‘— ∏
β‰₯2 𝑝
π΄βˆ’π‘›
𝐴
βˆ₯𝐹𝑗 βˆ₯𝐿𝑝 (𝐷,πœŒπ‘— ) .
𝑝,π‘ž
𝑝,π‘ž
𝑀𝑗
𝑀𝑗 𝑗=1
𝑖=2
𝑗=1
𝑗=2
87
(3.16)
(3.17)
Proof. From Lemma 2.9 and by induction on π‘š, we have
(π‘š
)𝑝 ( π‘š
)1βˆ’π‘
∏
∏
βˆ—πœ‘+πœ“ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
βˆ—πœ‘+πœ“ πœŒπ‘— (𝝃 π‘š )
𝑗=1
β‰₯
𝑗=1
π‘š
∏
{
(
π΄βˆ’π‘›π‘
𝑝,π‘ž
𝑖=2
𝑖
∏
π‘šπ‘—
𝑀𝑗
𝑗=1
)}
π‘š
∏
𝐴𝑝𝑝,π‘ž
𝑗=2
(
π‘šπ‘—
𝑀𝑗
)∏
π‘š
βˆ—πœ‘+πœ“ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š ).
𝑗=1
Therefore,
∫ (∏
π‘š
𝐷
)𝑝 (
βˆ—πœ‘+πœ“ (𝐹𝑗 πœŒπ‘— )(𝝃 π‘š )
𝑗=1
π‘š
∏
)1βˆ’π‘
βˆ—πœ‘+πœ“ πœŒπ‘— (𝝃 π‘š )
𝑑𝝃 π‘š
𝑗=1
)} π‘š
(
)∫ ∏
π‘š
𝑖
∏
∏
π‘šπ‘—
π‘šπ‘—
𝑝
βˆ’π‘›π‘
βˆ—πœ‘+πœ“ (𝐹𝑗𝑝 πœŒπ‘— )(𝝃 π‘š )𝑑𝝃 π‘š
𝐴𝑝,π‘ž
β‰₯
𝐴𝑝,π‘ž
𝑀𝑗
𝑀𝑗
𝐷 𝑗=1
𝑗=2
𝑖=2
𝑗=1
{
(
)}
) π‘š ∫
(
π‘š
𝑖
π‘š
∏
∏
∏
π‘šπ‘—
π‘šπ‘— ∏
π‘šβˆ’1
βˆ’π‘›π‘
𝑝
=2
𝐴𝑝,π‘ž
𝐹𝑗𝑝 (𝒙)πœŒπ‘— (𝒙)𝑑𝒙.
𝐴𝑝,π‘ž
𝑀
𝑀
𝑗
𝑗
𝑖=2
𝑗=1
𝑗=1 𝐷
𝑗=2
π‘š
∏
{
(
The Theorem is thus proved. β–‘
¿From Theorem 3.6, we have the following inequalities:
Corollary 3.7 Let 𝐹𝑗 (𝑗 = 1, 2, ..., π‘š) be positive functions satisfying
1
1
0 < π‘šπ‘—π‘ ≀ 𝐹𝑗 ≀ 𝑀𝑗𝑝 < ∞
(3.18)
on the set ℝ𝑛+ . Then for any positive continuous functions πœŒπ‘— on ℝ𝑛+ , and for the iterated
∏
Fourier cosin convolution π‘š
𝑗=1 βˆ—π”‰π‘ , we have the inequality
(
)( π‘š
) 𝑝1 βˆ’1 π‘š
∏
∏
βˆ—π”‰π‘ (𝐹𝑗 πœŒπ‘— )
βˆ—π”‰π‘ πœŒπ‘—
𝑗=1
𝑗=1
𝐿𝑝 (ℝ𝑛
+)
(3.19)
{
)}
(
] π‘šβˆ’1
)∏
[
(
π‘š
π‘š
π‘š
𝑖
∏
∏
∏
𝑝
2
π‘šπ‘—
π‘šπ‘—
β‰₯ √ 𝑛
π΄βˆ’π‘›
𝐴𝑝,π‘ž
βˆ₯𝐹𝑗 βˆ₯𝐿𝑝 (ℝ𝑛+ ,πœŒπ‘— ) .
𝑝,π‘ž
𝑀
𝑀
2πœ‹
𝑗
𝑗
𝑖=2
𝑗=1
𝑗=2
𝑗=1
Corollary 3.8 Let functions πœŒπ‘—,π‘Ÿ (𝑗 = 1, 2, ..., π‘š; π‘Ÿ = 1, 2, ..., 𝑠) be positive on 𝐷 such that
∏
the convolution π‘š
𝑗=1 βˆ—πœ‘,πœ“ πœŒπ‘—,π‘Ÿ exists. For some positive functions 𝐹𝑗,π‘Ÿ satisfying
1
1
𝑝
𝑝
≀ 𝐹𝑗,π‘Ÿ ≀ 𝑀𝑗,π‘Ÿ
<∞
0 < π‘šπ‘—,π‘Ÿ
on the set 𝐷 (𝑗 = 1, 2, ..., π‘š; π‘Ÿ = 1, 2, ..., 𝑠), and for 𝑝 > 1,
(
)( 𝑠 π‘š
) 𝑝1 βˆ’1 𝑝
βˆ‘
𝑠 ∏
π‘š
βˆ‘βˆ
βˆ—
(𝐹
𝜌
)
βˆ—
𝜌
πœ‘,πœ“
𝑗,π‘Ÿ
𝑗,π‘Ÿ
πœ‘,πœ“
𝑗,π‘Ÿ
π‘Ÿ=1 𝑗=1
π‘Ÿ=1 𝑗=1
𝐿𝑝 (𝐷)
(
)
π‘š0
β‰₯ 2π‘šβˆ’1 π΄βˆ’π‘
𝑝,π‘ž
𝑀0
{
( 𝑖
) π‘š
}
(
) π‘š
𝑠
π‘š
βˆ‘
∏
π‘šπ‘—,π‘Ÿ ∏ βˆ’π‘›π‘ ∏ π‘šπ‘—,π‘Ÿ ∏
×
𝐴𝑝,π‘ž
𝐴𝑝,π‘ž
βˆ₯𝐹𝑗,π‘Ÿ βˆ₯𝑝𝐿𝑝 (𝐷,πœŒπ‘—,π‘Ÿ ) ,
𝑀
𝑀
𝑗,π‘Ÿ
𝑗,π‘Ÿ
π‘Ÿ=1
𝑗=2
𝑖=2
𝑗=1
𝑗=1
88
(3.20)
(3.21)
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
where
π‘š0 = min
{π‘š
∏
π‘Ÿ
4
}
π‘šπ‘—,π‘Ÿ
,
𝑀0 = max
π‘Ÿ
𝑗=1
{π‘š
∏
89
}
𝑀𝑗,π‘Ÿ
.
𝑗=1
Applications
4.1
The Bernoulli-Euler Beam Equation
We consider the vertical deflection 𝑒(π‘₯) of an infinite beam on an elastic foundation under
the action of a prescribed vertical load π‘Š (π‘₯). The deflection 𝑒(π‘₯) satisfies the ordinary
differential equation
𝑑4 𝑒
𝐸𝐼 4 + πœ…π‘’ = π‘Š (π‘₯), βˆ’βˆž < π‘₯ < ∞,
(4.1)
𝑑π‘₯
where 𝐸𝐼 is the flexural rigidity and πœ… is the foundation modulus of the beam. We find
the solution assuming that π‘Š (π‘₯) has a compact support and 𝑒, 𝑒′ , 𝑒′′ , 𝑒′′′ all tend to zero as
∣π‘₯∣ β†’ ∞. Put
π‘Š (π‘₯)
πœ…
, 𝐹 (π‘₯)𝜌(π‘₯) =
.
π‘Ž4 =
𝐸𝐼
𝐸𝐼
By using the Fourier transform, we obtain the solution ([2, pp. 63-64])
∫ ∞
1
𝐹 (πœ‰)𝜌(πœ‰)𝐺(π‘₯ βˆ’ πœ‰)π‘‘πœ‰,
(4.2)
𝑒(π‘₯) = 3
2π‘Ž βˆ’βˆž
where
(
)
(
)
π‘Ž
π‘Žπœ‰
πœ‹
𝐺(πœ‰) = exp βˆ’ √ βˆ£πœ‰βˆ£ sin √ +
.
2
2 4
Let 𝑏, 𝑐 ∈ ℝ and
π‘₯ ∈ [βˆ’π‘, 𝑏],
(4.3)
√
πœ‰ ∈ [βˆ’π‘, 𝑐],
√
2
3 2
βˆ’
πœ‹ < βˆ’π‘ βˆ’ 𝑐 < 𝑏 + 𝑐 < πœ‹
.
4π‘Ž
4π‘Ž
Clearly,
(
)
(
)
πœ‹ π‘Ž(𝑏 + 𝑐)
π‘Ž(π‘₯ βˆ’ πœ‰) πœ‹
√
0 < 𝛼 := sin
βˆ’ √
+
≀ sin
.
4
4
2
2
Since
}
{
}
{
π‘Žβˆ£π‘ βˆ’ π‘βˆ£
π‘Ž(𝑏 + 𝑐)
≀ 𝐺(π‘₯ βˆ’ πœ‰) ≀ exp βˆ’ √
𝛼 exp βˆ’ √
2
2
we see that the condition
1
1
0 < π‘š 𝑝 ≀ 𝐹 (πœ‰)𝐺(π‘₯ βˆ’ πœ‰) ≀ 𝑀 𝑝 ,
(4.4)
holds if
{
}
{
}
1
1
1
π‘Ž(𝑏 + 𝑐)
π‘Žβˆ£π‘
βˆ’
π‘βˆ£
√
√
0 < exp
π‘š 𝑝 ≀ 𝐹 (πœ‰) ≀ 𝑀 𝑝 exp
.
𝛼
2
2
Thus, for βˆ’π‘ ≀ 𝑑 < 𝑒 ≀ 𝑏, the formal solution 𝑒(π‘₯) satisfies the inequality
{
}
∫ 𝑒
( π‘š )}βˆ’π‘
π‘π‘Ž(𝑏 + 𝑐) {
𝑝
𝑝
√
𝑒 (π‘₯)𝑑π‘₯ β‰₯ (𝑒 βˆ’ 𝑑)𝛼 exp βˆ’
𝐴𝑝,π‘ž
𝑀
2
𝑑
(∫ 𝑒
)π‘βˆ’1 ∫ 𝑒
×
𝜌(π‘₯)𝑑π‘₯
𝐹 𝑝 (π‘₯)𝜌(π‘₯)𝑑π‘₯.
𝑑
𝑑
89
(4.5)
(4.6)
4.2
The Helmholtz Equation
We consider the Dirichlet problem for the Helmholtz equation in a half space of ℝ3 , i.e. the
determination of the bounded solution of
(π‘₯, 𝑦) ∈ ℝ2 ,
Ξ”3 𝑒(π‘₯, 𝑦, 𝑑) + π‘˜π‘’(π‘₯, 𝑦, 𝑑) = 0,
𝑑 ∈ ℝ+ ,
π‘˜ ∈ ℝ+ ,
(4.7)
under the boundary value condition
𝐹 (π‘₯, 𝑦)𝜌(π‘₯, 𝑦) ∈ 𝐿1 (ℝ2 ).
𝑒(π‘₯, 𝑦, 0) = 𝐹 (π‘₯, 𝑦)𝜌(π‘₯, 𝑦),
(4.8)
Its solution has the form ([1, pp. 75-76])
(
𝑒(π‘₯, 𝑦, 𝑑) = 2𝑑
π‘˜
2πœ‹
) 32 ∫
∞
∫
∞
𝐹 (πœ‰, 𝜏 )𝜌(πœ‰, 𝜏 )
3
βˆ’βˆž (𝑑2
+ βˆ£πœ‰ βˆ’ π‘₯∣2 + ∣𝜏 βˆ’ π‘¦βˆ£2 ) 2
)
( √
2
2
2
× πΎ 3 π‘˜ 𝑑 + βˆ£πœ‰ βˆ’ π‘₯∣ + ∣𝜏 βˆ’ π‘¦βˆ£ π‘‘πœ‰π‘‘πœ,
βˆ’βˆž
(4.9)
2
where 𝐾𝜈 (π‘₯) denotes the McDonald function and for 𝜈 =
√
𝐾 3 (π‘₯) =
2
πœ‹
2π‘₯
(
1
1+
π‘₯
)
3
2
(see [9, Supp. 10]):
π‘’βˆ’π‘₯ .
We rewrite (4.9) as
𝑑
𝑒(π‘₯, 𝑦, 𝑑) =
2πœ‹
∫
∞
∫
∞
𝐹 (πœ‰, 𝜏 )𝜌(πœ‰, 𝜏 )𝐺(πœ‰ βˆ’ π‘₯, 𝑦 βˆ’ 𝜏 )π‘‘πœ‰π‘‘πœ,
βˆ’βˆž
where
𝐺(πœ‰, 𝜏 ) =
(4.10)
βˆ’βˆž
1+π‘˜
(𝑑2
√
𝑑2 + πœ‰ 2 + 𝜏 2
+
πœ‰2
+
9
π‘’βˆ’π‘˜
√
𝑑2 +πœ‰ 2 +𝜏 2
.
𝜏 2) 4
Let π‘Ž1 , π‘Ž2 , 𝑏1 , 𝑏2 , 𝑐1 , 𝑐2 , 𝑑1 , 𝑑2 be some real numbers and
π‘₯ ∈ [π‘Ž1 , π‘Ž2 ],
πœ‰ ∈ [𝑏1 , 𝑏2 ],
𝑦 ∈ [𝑐1 , 𝑐2 ],
𝜏 ∈ [𝑑1 , 𝑑2 ].
Denote
𝛼 = max{βˆ£π‘Ž1 βˆ’ 𝑏1 ∣, βˆ£π‘Ž1 βˆ’ 𝑏2 ∣, βˆ£π‘Ž2 βˆ’ 𝑏1 ∣, βˆ£π‘Ž2 βˆ’ 𝑏2 ∣},
𝛽 = max{βˆ£π‘1 βˆ’ 𝑑1 ∣, βˆ£π‘1 βˆ’ 𝑑2 ∣, βˆ£π‘2 βˆ’ 𝑑1 ∣, βˆ£π‘2 βˆ’ 𝑑2 ∣}.
We have
1 + π‘˜π‘‘
0<
Thus
∫
𝑐2 βˆ’πœ
√
𝑑2 +𝛼2 +𝛽 2
(𝑑 + 𝛼2 + 𝛽 2 ) 4
∫
π‘Ž2 βˆ’πœ‰
𝑑𝑦
𝑐1 βˆ’πœ
βˆ’π‘˜
9 𝑒
π‘Ž1 βˆ’πœ‰
𝐺𝑝 (π‘₯, 𝑦)𝑑π‘₯ β‰₯
≀ 𝐺(πœ‰ βˆ’ π‘₯, 𝑦 βˆ’ 𝜏 ) ≀
(𝑐2 βˆ’ 𝑐1 )(π‘Ž2 βˆ’ π‘Ž1 )(1 + π‘˜π‘‘)𝑝
(𝑑 + 𝛼2 + 𝛽 2 )
90
9𝑝
4
π‘’βˆ’π‘π‘˜
1
9
𝑑2
.
√
𝑑2 +𝛼2 +𝛽 2
.
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
91
Hence, for a function 𝐹 satisfying
1 9
(𝑑 + 𝛼2 + 𝛽 2 ) 4 π‘˜βˆšπ‘‘2 +𝛼2 +𝛽 2 𝑝1
0<
𝑒
π‘š ≀ 𝐹 (πœ‰, 𝜏 ) ≀ 𝑀 𝑝 𝑑 2
1 + π‘˜π‘‘
9
(4.11)
and for a positive continuous function 𝜌 on [𝑏1 , 𝑏2 ] × [𝑑1 , 𝑑2 ], we obtain
∫ 𝑐2 ∫ π‘Ž2
𝑒𝑝 (π‘₯, 𝑦, 𝑑)𝑑π‘₯
𝑑𝑦
𝑐1
π‘Ž1
𝑑𝑝 (1 + π‘˜π‘‘)𝑝
β‰₯ (𝑐2 βˆ’ 𝑐1 )(π‘Ž2 βˆ’ π‘Ž1 )
βˆ’π‘π‘˜
9𝑝 𝑒
(2πœ‹)𝑝 (𝑑 + 𝛼2 + 𝛽 2 ) 4
)π‘βˆ’1 ∫ 𝑑2 ∫
(∫ 𝑑2 ∫ 𝑏2
𝜌(πœ‰, 𝜏 )π‘‘πœ‰
π‘‘πœ
×
π‘‘πœ
𝑑1
4.3
𝑏1
√
𝑑2 +𝛼2 +𝛽 2
{
( π‘š )}βˆ’2𝑝
𝐴𝑝,π‘ž
𝑀
(4.12)
𝑏2
𝐹 𝑝 (πœ‰, 𝜏 )𝜌(πœ‰, 𝜏 )π‘‘πœ‰.
𝑏1
𝑑1
The Cauchy Problem for the Inhomogeneous Heat Equation
The equation of heat conduction with sources is given by
𝑒𝑑 (𝑑, 𝒙) βˆ’ 𝑐2 Δ𝑛 𝑒(𝑑, 𝒙) = 𝐹 (𝑑, 𝒙)𝜌(𝑑, 𝒙),
(𝑑, 𝒙) ∈ ℝ+ × β„π‘› ,
(4.13)
where 𝐹 𝜌 ∈ 𝐿1 for every 𝑑 ∈ ℝ+ , under the initial value condition
𝑒(0, 𝒙) = 0.
(4.14)
Its solution has the form (see [1, pp. 58-59])
1
𝑒(𝑑, 𝒙) =
(4πœ‹π‘2 )𝑛/2
𝑑
∫
∫
π‘‘πœ
0
ℝ𝑛
{
}
𝐹 (𝜏, 𝝃)𝜌(𝜏, 𝝃)
βˆ£πƒ βˆ’ π’™βˆ£2
exp βˆ’ 2
𝑑𝝃.
(𝑑 βˆ’ 𝜏 )𝑛/2
4𝑐 (𝑑 βˆ’ 𝜏 )
Take
𝐺(𝝃, 𝜏 ) =
1
𝜏 𝑛/2
(4.15)
{
}
βˆ£πƒβˆ£2
exp βˆ’ 2
.
4𝑐 𝜏
Let
𝝃 ∈ [βˆ’π’‚, 𝒂],
Since
1
𝑛/2
𝑇2
𝝃 ∈ [βˆ’π’ƒ, 𝒃],
𝑑 ∈ [𝑇1 , 𝑇2 ],
𝑇1 > 0.
{
}
{
}
βˆ£π’‚ + π’ƒβˆ£2
1
βˆ£π’™ βˆ’ πƒβˆ£2
1
exp βˆ’
<
exp
βˆ’
<
,
𝑛/2
4𝑐2 𝑇1
(𝑑 βˆ’ 𝜏 )𝑛/2
4𝑐2 𝜏
𝑇1
we see that the condition
1
1
0 < π‘š 𝑝 < 𝐹 (𝝃, 𝜏 )𝐺(𝒙 βˆ’ 𝝃, 𝑑 βˆ’ 𝜏 ) < 𝑀 𝑝
holds if
0<
𝑛/2
𝑇2
{
exp
βˆ£π’‚ + π’ƒβˆ£2
4𝑐2 𝑇1
}
1
1
(4.16)
𝑛/2
π‘š 𝑝 < 𝐹 (𝝃, 𝜏 ) < 𝑀 𝑝 𝑇1 .
91
(4.17)
Thus, for βˆ’π’‚ < 𝒅, 𝒆 < 𝒂, the inequality (3.10) yields
∫ 𝑇2 ∫ 𝒆
𝑒𝑝 (𝒙, 𝑑)𝑑𝒙
𝑑𝑑
𝒅
𝑇1
}
{
( π‘š )}βˆ’(𝑛+1)𝑝
1
(𝒆 βˆ’ 𝒅)
βˆ£π’‚ + π’ƒβˆ£2 {
β‰₯
𝐴
exp
βˆ’π‘
𝑝,π‘ž
(4πœ‹π‘2 )𝑛𝑝/2 𝑇2𝑛𝑝/2
4𝑐2 𝑇1
𝑀
)π‘βˆ’1 ∫ 𝑇2
(∫ 𝑇2 ∫ 𝒆
∫ 𝒆
𝐹 𝑝 (𝒙, 𝑑)𝜌(𝒙, 𝑑)𝑑𝒙,
(𝑇2 βˆ’ 𝑑)𝑑𝑑
𝜌(𝒙, 𝑑)𝑑𝒙
×
𝑑𝑑
𝑇1
𝒅
𝑇1
(4.18)
𝒅
where 𝜌 is a positive continuous function on [𝒅, 𝒆] × [𝑇1 , 𝑇2 ], and 𝐹 satisfies (4.17).
References
[1] Yu. A. Brychkov, H. J. Glaeske, A. P. Prudnikov, Vu Kim Tuan, Multidimensional
Integral Transformations, Gordon and Breach Science Publishers, New York - Reading,
1992.
[2] L.Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman &
Hall/CRC, Boca Raton, 2007.
[3] D. T. Duc and N. D. V. Nhan, On some reverse weighted 𝐿𝑝 (ℝ𝑛 )βˆ’norm inequalities in
convolutions and their applications, Math. Inequal. Appl. 12(2009), no. 1, 67-80.
[4] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classic and New Inequalities in Analysis,
Kluwer Academic Publishers, The Netherlands, 1993.
[5] N. D. V. Nhan, D. T. Duc, Fundamental inequalities for the iterated Laplace convolution
in weighted 𝐿𝑝 Spaces and their applications, to appear in Integr. Transform. and Special
Funct..
[6] N. D. V. Nhan, D. T. Duc, Fundamental iterated convolution inequalities in weighted
𝐿𝑝 spaces and their applications, Math. Inequal. Appl., 12 (2009), no. 3, 487-498.
[7] N. D. V. Nhan, D. T. Duc and V. K. Tuan, Weighted 𝐿𝑝 βˆ’norm inequalities for various
convolution type transformations and their applications, manuscript.
[8] N. D. V. Nhan and D. T. Duc, Reverse weighted 𝐿𝑝 βˆ’norm inequalities and their applications, J. Math. Inequal. 2(2008), no. 1, 57-73.
[9] A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca
Raton, 1998.
[10] S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse weighted 𝐿𝑝 - norm inequalities in
convolutions and stability in inverse problems, J. of Inequal. Pure and Appl. Math.,
1(1) (2000), Article 7. [Online: http://jipam.vu.edu.au/v1n1/018βˆ’ 99.html].
92
REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS
[11] S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems, J. of Inequal. Pure and Appl. Math., 3(5) (2002),
Article 80. [Online: http://jipam.vu.edu.au/v3n5/029βˆ’ 99.html].
[12] S. Saitoh, V. K. Tuan and M. Yamamoto, Convolution inequalities and applications, J. of Inequal. Pure and Appl. Math., 4(3) (2003), Article 50. [Online:
http://jipam.vu.edu.au/v4n3/138βˆ’ 02.html].
[13] Vu Kim Tuan, Integral transforms of Fourier cosine convolution type, J. Math. Anal.
Appl. 229(1999), 519-529.
[14] Xiao-Hua, L., On the inverse of Hölder inequality, Math. Practice and Theory, 1(1990),
84-88.
93
93