Armenian Journal of Mathematics Volume 2, Number 3, 2009, 77β93 Reverse weighted ππβ norm inequalities for convolution type integrals Nguyen Du Vi Nhan*, Dinh Thanh Duc** and Vu Kim Tuan*** * Department of Mathematics, Quy Nhon University, Binh Dinh, Vietnam. [email protected] ** Department of Mathematics, Quy Nhon University, Binh Dinh, Vietnam. [email protected] *** Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA. [email protected] Abstract By using reverse HoΜlderβs inequalities we obtain reverse weighted πΏπ norm inequalities for various iterated convolutions. Key Words: Convolution, integral transform, inverse problem, reverse HoΜlder inequality, stability, weighted πΏπ inequality, Bernoulli-Euler beam equation, Helmholtz equation, heat equation. Mathematics Subject Classiο¬cation 2000: Primary 44A35, 35A22; Secondary 26D20 1 Introduction In order to study stability of some inverse problems, in a series of papers, S. Saitoh, M. Yamamoto and the last author ([10, 11, 12]) derived reverse inequalities for convolution in some weighted πΏπ spaces by using the following reverse HoΜlderβs inequality: Proposition 1.1 ([14]; see also [4, satisfying pp. 125-126]) For two positive functions π and π 0<πβ€ π β€π <β π 77 (1.1) on the set π, and for π, π > 1, πβ1 + π β1 = 1, (β« ) π1 (β« ) 1π (π)β« 1 1 π ππ πππ β€ π΄π,π π π π π ππ, π π π π (1.2) if the right hand side integral converges. Here 1 π΄π,π (π‘) = π β π1 β 1π π π‘β ππ (1 β π‘) ( ) π1 ( ) 1π . 1 1 π π 1βπ‘ 1βπ‘ Then, by using Proposition 1.1 the ο¬rst two authors obtained the following Proposition 1.2 ([3]) Let πΉ1 and πΉ2 be positive functions satisfying 1 1 1 1 0 < π1π β€ πΉ1 (π) β€ π1π < β, 0 < π2π β€ πΉ2 (π) β€ π2π < β, π β βπ . (1.3) Then for any positive continuous functions π1 and π2 on βπ , we have the following reverse weighted πΏπ (π > 1)βnorm inequality for convolution 1 β1 ((πΉ1 π1 ) β (πΉ2 π2 ))(π1 β π2 ) π πΏπ (βπ ) ) ( (1.4) π1 π2 βπ β₯ π΄π,π β₯πΉ1 β₯πΏπ (βπ ,π1 ) β₯πΉ2 β₯πΏπ (βπ ,π2 ). π1 π2 In [8, 3] we gave various applications of (1.4) from the viewpoint of stability in inverse problems. Later in [7], we introduced several iterated convolution type transformations. Using the HoΜlderβs inequalities we established weighted πΏπ , π > 1, norm inequalities for these iterated convolutions. In this paper, by using the reverse HoΜlderβs inequalities we will derive reverse type inequalities for the iterated convolutions. 2 Preliminaries Throughout this paper, by π = (π₯1 , ..., π₯π ), π₯π β β, π = 1, 2, ..., π, we denote a vector in βπ . In particular, 1 = (1, 1, ..., 1), 2 = (2, 2, ..., 2), ... (2.1) We shall write π > π to denote π₯π > π¦π , π = 1, 2, ..., π. Anologously one has to understand π β₯ π, π < π, π β€ π. We always assume that π, ππ and ππ,π (π = 1, 2, ..., π; π = 1, 2, ..., π )β the weight functions, to be nonnegative, and 1 < π < β. When we write π΄ β€ π΅, we understand that if π΅ is ο¬nite, then π΄ is also ο¬nite, and bounded above by π΅. We shall denote some subsets of βπ βπ+ (π) = {π : π β βπ , 0 < π < π} (2.2) βππ = {π : π β βπ , π < π < β} . (2.3) Then, by using Proposition 1.1 we obtain the following lemma 78 REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 79 Lemma 2.1 Let Ξ© be a measurable set in βπ and π be a positive function belonging to πΏ1 (Ξ©). For a positive function π satisfying 0 < π1/π β€ π (π) β€ π 1/π < β (2.4) on the set Ξ©, and for π, π > 1, πβ1 + π β1 = 1, ) π1 (β« ) 1π (π)β« π [π (π)] π(π)ππ π(π)ππ β€ π΄π,π π (π)π(π)ππ. π Ξ© Ξ© Ξ© (β« π (2.5) Let π· be a domain in βπ , πΉπ (.) : π· β β, π = 1, β β β , π, and π(., .), π(., .) : π· × π· β π·. Then, we introduce a convolution type integral, called the πβ convolution Deο¬nition 2.2 ([7]) The πβ convolution of πΉ1 and πΉ2 , denoted by πΉ1 βπ πΉ2 , is deο¬ned by β« (πΉ1 βπ πΉ2 )(πΌ) = πΉ1 (π)πΉ2 (π(π, πΌ))β£ππΌ (π, πΌ)β£ππ, (2.6) π· when this integral exists. Here, ( β£ππΌ (π, πΌ)β£ := det ) β π(π, πΌ) βπΌ is the Jacobian of the transformation πΌ β π(., πΌ). Example 2.3 The following convolutions are particular cases of the πβconvolution ([1], [2]): β The Fourier convolution β« πΉ1 (π)πΉ2 (π β π)ππ, πΉ1 βπ πΉ2 := π β βπ . (2.7) βπ β The Laplace convolution β« πΉ1 (π )πΉ2 (π β π )ππ , π β βπ+ . (2.8) πΉ1 (π)πΉ2 (π/π)πβ1 ππ, π β βπ+ . (2.9) πΉ1 βπ πΉ2 := βπ + (π) β The Mellin convolution β« πΉ1 βπ πΉ2 := βπ + Deο¬nition 2.4 ([7]) Let πΊπ (., .) : βπ × βπ + β β. The Fourier-Laplace convolution of πΊ1 (π , π») and πΊ2 (π , π») is deο¬ned by β« β« ππ (πΊ1 βπ,π πΊ2 )(π, πΌ) := πΊ1 (π , π»)πΊ2 (π β π , πΌ β π»)ππ». (2.10) βπ + (π) βπ 79 Remark 2.5 We observe that the Fourier-Laplace convolution is a special case of the π convolution. By Lemma 2.1, we have Lemma 2.6 Let π1 and π2 be two positive functions on π· such that the convolution π1 βπ π2 exists. For two positive functions πΉ1 and πΉ2 satisfying 1 1 0 < πππ β€ πΉπ β€ πππ < β, π = 1, 2, (2.11) on the set π·, and for π > 1, π΄ππ π,π ( π1 π2 π1 π2 ) [((πΉ1 π1 ) βπ (πΉ2 π2 ))(πΌ)]π πβ1 β₯ [(π1 βπ π2 )(πΌ)] ((πΉ1π π1 ) (2.12) βπ (πΉ2π π2 ))(πΌ) for all πΌ β π·. ¿From the πβ convolution and the πβ convolution, we get the following deο¬nition Deο¬nition 2.7 ([7]) Under suitable hypotheses for the πβ convolution πΉ1 βπ πΉ2 and the πβ convolution πΉ1 βπ πΉ2 , the (π + π)β convolution, denoted by πΉ1 βπ+π πΉ2 , is deο¬ned by β« πΉ1 (π ) [πΉ2 (π(π , π))β£ππ (π , π)β£ + πΉ2 (π(π , π))β£ππ (π , π)β£] ππ . (2.13) (πΉ1 βπ+π πΉ2 )(π) := π· Example 2.8 The Fourier cosine convolution (see [13]) β« 1 πΉ1 βππ πΉ2 (π) := β π πΉ1 (π)[πΉ2 (π + π) + πΉ2 (β£π β πβ£)]ππ 2π βπ+ (2.14) is a special case of the (π + π)βconvolution. Then, we have Lemma 2.9 Let π1 and π2 be two positive functions on π· such that the convolution π1 βπ+π π2 exists. For two positive functions πΉ1 and πΉ2 satisfying 1 1 0 < πππ β€ πΉπ β€ πππ < β on the set π·, and for π > 1, ( ) ( ) π1 π2 π2 ππ π π΄π,π π΄π,π [((πΉ1 π1 ) βπ+π (πΉ2 π2 ))(πΌ)]π π1 π2 π2 πβ1 β₯ [(π1 βπ+π π2 )(πΌ)] ((πΉ1π π1 ) for all πΌ β π·. 80 βπ+π (πΉ2π π2 ))(πΌ) (2.15) (2.16) REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 81 Proof. Application of the reverse HoΜlderβs inequality gives ( ) π2 π΄π,π [πΉ2 (π(π, πΌ))π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£ + πΉ2 (π(π, πΌ))π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£] π2 1 β₯ [πΉ2π (π(π, πΌ))π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£ + πΉ2π (π(π, πΌ))π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£] π × [π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£ + π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£] πβ1 π . Therefore, ) ( ) π1 π2 π2 π΄π,π [((πΉ1 π1 ) βπ+π (πΉ2 π2 ))(πΌ)] π1 π2 π2 )β« ( π1 π2 β₯ π΄ππ,π πΉ1 (π)π1 (π) π1 π2 π· π΄ππ,π ( 1 × [πΉ2π (π(π, πΌ))π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£ + πΉ2π (π(π, πΌ))π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£] π × [π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£ + π2 (π(π, πΌ))β£ππΌ (π, πΌ)β£] πβ1 π ππ, which is, by Lemma 2.1, β₯ [(π1 βπ+π π2 )(πΌ)] πβ1 π 1 [((πΉ1π π1 ) βπ+π (πΉ2π π2 ))(πΌ)] π . Thus, the proof is complete. β‘ Deο¬nition 2.10 ([7]) For the πβ convolution, deο¬ne the πβ convolution product by [πβ1 ] π β β βπ πΉπ (π π ) = βπ πΉπ βπ πΉπ (π π ). π=1 3 βπ π=1 βπ πΉπ (2.17) π=1 Reverse weighted πΏπ inequalities in the iterated convolutions Our main inequality is the following: Theorem 3.1 Let functions ππ , π = 1, 2, ..., π, be positive on π· such that the convolution βπ π=1 βπ ππ . For π positive functions πΉπ satisfying 1 1 0 < πππ β€ πΉπ β€ πππ < β on the set π·(π = 1, 2, ..., π), and for π > 1, ( )( π ) π1 β1 β π β βπ (πΉπ ππ )(π π ) βπ ππ (π π ) π=1 π=1 πΏπ (π·) { ( π )} π π β β ππ β β₯ π΄βπ β₯πΉπ β₯πΏπ (π·,ππ ) . π,π ππ π=2 π=1 π=1 81 (3.1) (3.2) Inequality (3.2) and others should be understood in the sense that if the left hand side is ο¬nite, then so is the right hand side, and in this case the inequality holds. Corollary 3.2 For positive functions ππ,π (π = 1, 2, ..., π; π = 1, 2, ..., π ) on π· such that the β convolution π π=1 βπ ππ,π exists and for positive functions πΉπ,π satisfying 1 1 π π 0 < ππ,π β€ πΉπ,π β€ ππ,π <β (3.3) on the set π·(π = 1, 2, ..., π; π = 1, 2, ..., π ), and for π > 1, we have ( )( π π ) π1 β1 β π π ββ π β β (πΉ π ) β π π π,π π,π π π,π π=1 π=1 π=1 π=1 πΏπ (π·) {π ) π } ( π )β ( π β β ππ,π β π0 π βπ βππ β₯ π΄π,π π΄ β₯πΉπ,π β₯πΏπ (π·,ππ,π ) , π0 π=1 π=2 π,π π=1 ππ,π π=1 (3.4) where π0 = min π {π β } ππ,π , π0 = max {π β π π=1 } ππ,π . π=1 Proof of Theorem 3.1 We ο¬rst proof the following inequality (π β )π ( π )1βπ β βπ (πΉπ ππ )(π π ) βπ ππ (π π ) π=1 β₯ π=1 π β { ( π΄βππ π,π π=2 π β ππ ππ π=1 )} π β (3.5) βπ (πΉππ ππ )(π π ), π π β π·. π=1 We use induction on π. When π = 2, the inequality (3.5) is reduced to Lemma 2.1. Now suppose (3.5) holds for some integer π β₯ 2. We claim that it also holds for π + 1. For all π π+1 , put πππ+1 (π π ) = {π β } πβ1 π βπ ππ (π π )ππ+1 (π(π π , π π+1 ))πππ+1 (π π , π π+1 ) π=1 and πππ+1 (π π ) = {π β } π1 βπ (πΉππ ππ )(π π )ππ+1 (π(π π , π π+1 ))πππ+1 (π π , π π+1 ) π=1 × πΉπ+1 (π(π π , π π+1 )). 82 REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS By induction hypothesis, we arrive at ( π )} π+1 { π β β ππ β π΄ππ,π βπ (πΉπ ππ )(π π+1 ) ππ π=2 π=1 π=1 )} ( π ) { ( π π β β β ππ βπ (πΉπ ππ ) βπ (πΉπ+1 ππ+1 ) (π π+1 ) = π΄ππ,π ππ π=1 π=2 π=1 β« πππ+1 (π π )πππ+1 (π π )ππ π . β₯ π· The condition (3.1) implies π+1 β ππ β€ π=1 ππππ+1 (π π ) ππππ+1 (π π ) β€ π+1 β ππ , π π β π·. π=1 Hence, one can apply the reverse HoΜlder inequality to πππ+1 (π π ) and πππ+1 (π π ) to obtain }π ) { (π+1 β ππ β« πππ+1 (π π )πππ+1 (π π )ππ π π΄ππ,π π π π· π=1 }πβ1 β« {β« π [πππ+1 (π π )]π ππ π [πππ+1 (π π )] ππ π β₯ π· π· = {π+1 β βπ ππ (π π+1 ) }πβ1 π+1 β π=1 βπ (πΉππ ππ )(π π+1 ) π=1 and so the assertion follows. Now, by taking integration of both sides of (3.5) with respect to π π on π· we obtain the inequality )π ( π )1βπ β« (β π β βπ (πΉπ ππ )(π π ) βπ ππ (π π ) ππ π π· β₯ π=1 π β π=2 π=1 { ( π )} β« π β ππ β π΄βππ βπ (πΉππ ππ )(π π )ππ π . π,π ππ π· π=1 π=1 Here we have, by deο¬nition, β« β π βπ (πΉππ ππ )(π π )ππ π π· π=1 β« = β« ππ π π· × π·ππ πβ1 [πβ1 β ] βπ (πΉππ ππ )(π πβ1 ) π=1 πΉππ (π(π πβ1 , π π ))ππ (π(π πβ1 , π π ))β£πππ (π πβ1 , π π )β£ππ πβ1 , which is, by the Fubiniβs theorem and the change of variables ππ = π(π πβ1 , π π ), ] β« [πβ1 β« β π = βπ (β£πΉπ β£ ππ )(π πβ1 ) ππ πβ1 β£πΉπ (ππ )β£π ππ (ππ )πππ . π· π· π=1 83 83 Therefore, β« (β π π· β₯ )π ( βπ (πΉπ ππ )(π π ) π=1 π β π β )1βπ βπ ππ (π π ) ππ π π=1 ( { π΄βππ π,π π=2 π β ππ ππ π=1 )} (3.6) π β« β πΉππ (π)ππ (π)ππ. π· π=1 Raising both sides of the inequality (3.6) to power 1/π yields the inequality (3.1). β‘ Proof of Corollary 3.2 For every π π β π·, take ππ = (π β )( π )β1/π β βπ (πΉπ,π ππ,π )(π π ) βπ ππ,π (π π ) π=1 π=1 and ππ = (π β )1/π βπ ππ,π (π π ) , π = 1, 2, ..., π . π=1 The condition (3.3) implies π0 β€ π β π ππ,π π=1 ππ β ππ,π β€ π0 , β€ ππ β€ ππ π=1 π = 1, 2, ..., π . Hence, we obtain ( )( π )πβ1 )π ( ) (β π β π 0 πππ πππ β€ π΄ππ,π ππ π π π0 π=1 π=1 π=1 π β or, equivalent (π π β β π=1 )π ( βπ (πΉπ,π ππ,π )(π π ) π=1 β€ π΄ππ,π ( π β )1βπ { π π }πβ1 ββ βπ ππ,π (π π ) βπ ππ,π (π π ) π=1 π=1 π=1 π0 π0 ) (β π β π )π βπ (πΉπ,π ππ,π )(π π ) . π=1 π=1 Therefore, ( π β π β )π ( βπ (πΉπ,π ππ,π )(π π ) π=1 π=1 β₯ π΄βπ π,π ( π β π β )1βπ βπ ππ,π (π π ) π=1 π=1 π0 π0 (π )β π β π=1 βπ (πΉπ,π ππ,π )(π π ) π=1 )π ( π β π=1 84 (3.7) )1βπ βπ ππ,π (π π ) . REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 85 Now, by taking integration of both sides of (3.7) with respect to π π on π· we obtain )π ( π π )1βπ β« (β π β π ββ βπ (πΉπ,π ππ,π )(π π ) βπ ππ,π (π π ) ππ π π· π=1 π=1 β₯ π΄βπ π,π = π΄βπ π,π ( π0 ( π=1 π=1 (π )β« β π β π0 π· π=1 )π ( βπ (πΉπ,π ππ,π )(π π ) π β π=1 π=1 ) π β« (β π π0 β )π ( π β π0 π=1 π· βπ (πΉπ,π ππ,π )(π π ) π=1 )1βπ βπ ππ,π (π π ) ππ π )1βπ βπ ππ,π (π π ) ππ π , π=1 which is, by Theorem 3.1, {π ( π ) π } )β ( π β β β π π 0 π,π π΄βππ β₯πΉπ,π β₯ππΏπ (π·,ππ,π ) , β₯ π΄βπ π,π π0 π=1 π=2 π,π π=1 ππ,π π=1 that completes the proof of (3.4). β‘ ¿From Theorem 3.1, we obtain an inequality for the iterated Fourier-Laplace convolution here. Corollary 3.3 Let πΉπ (π, π‘), π = 1, 2, ..., π, be positive functions satisfying 1 1 0 < πππ β€ πΉπ β€ πππ < β (3.8) on the set βπ × β+ . Then for any positive functions ππ on βπ × β+ such that there exists βπ βπ π=1 βπ,π , we have the inequality π=1 βπ,π , and for the iterated Fourier Laplace convolution ( )( π ) π1 β1 π β β β (πΉ π ) β π π,π π π π,π π π=1 π=1 πΏπ (βπ ×β+ ) (3.9) { ( )} β(π+1) π π π β β β ππ β₯ π΄π,π β₯πΉπ β₯πΏπ (βπ ×β+ ,ππ ) . π π π=2 π=1 π=1 Remark 3.4 In formula 3.9, when π = 2 replacing π2 by 1, and πΉ2 (π β π, π‘ β π ) by πΊ(π β π, π‘ β π ), and integrating with respect to π from π to π and respect to π‘ from 0 to π (> 0), we arrive at the following inequality ( )π β« π β« π β« π‘ β« π πΉ (π, π )π(π, π )πΊ(π β π, π‘ β π )ππππ 0 β ππ ππ‘ (β« β« )πβ1 π‘ 0 π π(π, π )ππππ (3.10) 0 βπ β« β« π βπ β« πβπ { ( π )}β(π+1)π β« π β₯ π΄π,π ππ πΉ π (π, π )π(π, π )ππ ππ‘ πΊπ (π, π‘)ππ, π 0 βπ 0 πβπ if positive functions π, πΉ and πΊ satisfy 1 1 0 < π π β€ πΉ (π, π‘)πΊ(π β π, π‘ β π ) < π π < β for all (π, π‘) β [π, π] × [0, π ], (π, π ) β βπ × [0, π ]. 85 (3.11) Theorem 3.5 Let π β₯ 1, 0 < πΆ < π» 1 , 0 < π» π (π = 2, ..., π), and πΉπ β πΏβ (0, π» 1 + β β β + π» π )(π = 1, 2, ..., π), satisfy 0 β€ πΉπ β€ π < β, 0<π< π β π» π. (3.12) π=1 Then π(1βπ) π π π β β₯πΉ1 β₯πΏπ (πΆ,π» 1 ) β₯πΉπ β₯πΏπ (0,π» π ) π=2 (β« π» 1 +β β β +π» π ππ β« β€ π2 β« πππβ1 β β β πππ πΉ1 (π1 ) πΆ πΆ πΆ π β (3.13) )1/π πΉπ (ππ β ππβ1 )ππ1 . π=2 In particular; for πΆ = 0, we have π π(1βπ) π π β (β« β₯πΉπ β₯πΏπ (0,π» π ) β€ π π» 1 +β β β +π» π β 0 π=1 ππ π2 β« πΉ1π (π1 ) πππβ1 β β β πΆ πΆ β« ππ πΆ β€π β« (3.14) βπ π=1 π» π , we have πΉππ (ππ β ππβ1 )ππ1 π2 πΉ1πβ1 (π1 ) πΆ π(πβ1) . π=2 β« πππβ1 β β β = π β βπ πΉπ (π)ππ π=1 Proof. Since 0 β€ πΉπ (π = 1, 2, ..., π) β€ π for 0 < π < β« )1/π π β πΉππβ1 (ππ β ππβ1 )πΉ1 (π1 ) π=2 ππ πππβ1 β β β π β πΉ1 (π1 ) πΆ πΆ πΉπ (ππ β ππβ1 )ππ1 π=2 π2 β« π β πΉπ (ππ β ππβ1 )ππ1 . π=2 Hence β« π» 1 +β β β +π» π β« ππ β€π πΆ π(πβ1) β« π2 πππβ1 β β β πππ πΆ β« π β πΉ1π (π1 ) πΆ π» 1 +β β β +π» π β« π=2 ππ β« π2 πππβ1 β β β πππ πΆ πΉππ (ππ β ππβ1 )ππ1 πΆ πΉ1 (π1 ) πΆ π β (3.15) πΉπ (ππ β ππβ1 )ππ1 . π=2 On the other hand, let β§ β¨1 for π₯ β₯ 0 π(π₯) = β©0 for π₯ < 0, and let β« ππβ1 β« π2 πππβ2 β β β πΊ(ππβ1 ) = πΆ πΆ 86 πΉ1π (π1 ) πβ1 β π=2 πΉππ (ππ β ππβ1 )ππ1 , REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 87 we have β« π» 1 +β β β +π» π β« ππ β« πΆ π» 1 +β β β +π» π β« πΆ π» 1 +β β β +π» π π β πΉππ (ππ β ππβ1 )ππ1 π=2 ππ = β« πΉ1π (π1 ) πΆ πΆ β« π2 πππβ1 β β β πππ πΊ(ππβ1 )πΉππ (ππ β ππβ1 )πππβ1 πππ πΆ π» 1 +β β β +π» π β« πΊ(ππβ1 )πΉππ (ππ β ππβ1 )π(ππ β ππβ1 )πππβ1 πππ , = πΆ πΆ which is, by Fubiniβs theorem and the change of variables π = ππ β ππβ1 , π» 1 +β β β +π» π β« π» 1 +β β β +π» π βππβ1 (β« πΉππ (π)ππ ) πΊ(ππβ1 )πππβ1 ) (β« π» 1 +β β β +π» π βππβ1 π πΉπ (π)ππ πΊ(ππβ1 )πππβ1 β₯ 0 πΆ ) β« π» 1 +β β β +π» πβ1 (β« π» π π πΉπ (π)ππ πΊ(ππβ1 )πππβ1 β₯ 0 πΆ β« π» 1 +β β β +π» πβ1 β« π»π = πΊ(ππβ1 )πππβ1 πΉππ (π)ππ, = πΆ β« π» 1 +β β β +π» πβ1 0 πΆ 0 and so, β« π» 1 +β β β +π» π β« ππ β« πππβ1 β β β πππ πΆ πΆ β« π»1 β₯ πΆ πΉ1π (π)ππ π2 πΆ π β« π»π β π=2 πΉ1π (π1 ) π β πΉππ (ππ β ππβ1 )ππ1 π=2 πΉππ (π)ππ. 0 Combining with (3.15), we have the desired inequality (3.13). β‘ We next obtain the inequalities for the (π + π)βconvolution. Theorem 3.6 Let functions ππ , π = 1, 2, ..., π, be positive on π· such that the convolution βπ π=1 βπ+π ππ exists. For positive functions πΉπ satisfying 1 1 0 < πππ β€ πΉπ β€ πππ < β on the set π·, π = 1, 2, ..., π, and for π > 1, ( )( π ) π1 β1 β π β βπ+π (πΉπ ππ )(π π ) βπ+π ππ (π π ) π=1 π=1 πΏπ (π·) { ( π )} π ( ) π π β ππ β πβ1 β ππ β β₯2 π π΄βπ π΄ β₯πΉπ β₯πΏπ (π·,ππ ) . π,π π,π ππ ππ π=1 π=2 π=1 π=2 87 (3.16) (3.17) Proof. From Lemma 2.9 and by induction on π, we have (π )π ( π )1βπ β β βπ+π (πΉπ ππ )(π π ) βπ+π ππ (π π ) π=1 β₯ π=1 π β { ( π΄βππ π,π π=2 π β ππ ππ π=1 )} π β π΄ππ,π π=2 ( ππ ππ )β π βπ+π (πΉππ ππ )(π π ). π=1 Therefore, β« (β π π· )π ( βπ+π (πΉπ ππ )(π π ) π=1 π β )1βπ βπ+π ππ (π π ) ππ π π=1 )} π ( )β« β π π β β ππ ππ π βππ βπ+π (πΉππ ππ )(π π )ππ π π΄π,π β₯ π΄π,π ππ ππ π· π=1 π=2 π=2 π=1 { ( )} ) π β« ( π π π β β β ππ ππ β πβ1 βππ π =2 π΄π,π πΉππ (π)ππ (π)ππ. π΄π,π π π π π π=2 π=1 π=1 π· π=2 π β { ( The Theorem is thus proved. β‘ ¿From Theorem 3.6, we have the following inequalities: Corollary 3.7 Let πΉπ (π = 1, 2, ..., π) be positive functions satisfying 1 1 0 < πππ β€ πΉπ β€ πππ < β (3.18) on the set βπ+ . Then for any positive continuous functions ππ on βπ+ , and for the iterated β Fourier cosin convolution π π=1 βππ , we have the inequality ( )( π ) π1 β1 π β β βππ (πΉπ ππ ) βππ ππ π=1 π=1 πΏπ (βπ +) (3.19) { )} ( ] πβ1 )β [ ( π π π π β β β π 2 ππ ππ β₯ β π π΄βπ π΄π,π β₯πΉπ β₯πΏπ (βπ+ ,ππ ) . π,π π π 2π π π π=2 π=1 π=2 π=1 Corollary 3.8 Let functions ππ,π (π = 1, 2, ..., π; π = 1, 2, ..., π ) be positive on π· such that β the convolution π π=1 βπ,π ππ,π exists. For some positive functions πΉπ,π satisfying 1 1 π π β€ πΉπ,π β€ ππ,π <β 0 < ππ,π on the set π· (π = 1, 2, ..., π; π = 1, 2, ..., π ), and for π > 1, ( )( π π ) π1 β1 π β π β π ββ β (πΉ π ) β π π,π π,π π,π π,π π,π π=1 π=1 π=1 π=1 πΏπ (π·) ( ) π0 β₯ 2πβ1 π΄βπ π,π π0 { ( π ) π } ( ) π π π β β ππ,π β βππ β ππ,π β × π΄π,π π΄π,π β₯πΉπ,π β₯ππΏπ (π·,ππ,π ) , π π π,π π,π π=1 π=2 π=2 π=1 π=1 88 (3.20) (3.21) REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS where π0 = min {π β π 4 } ππ,π , π0 = max π π=1 {π β 89 } ππ,π . π=1 Applications 4.1 The Bernoulli-Euler Beam Equation We consider the vertical deο¬ection π’(π₯) of an inο¬nite beam on an elastic foundation under the action of a prescribed vertical load π (π₯). The deο¬ection π’(π₯) satisο¬es the ordinary diο¬erential equation π4 π’ πΈπΌ 4 + π π’ = π (π₯), ββ < π₯ < β, (4.1) ππ₯ where πΈπΌ is the ο¬exural rigidity and π is the foundation modulus of the beam. We ο¬nd the solution assuming that π (π₯) has a compact support and π’, π’β² , π’β²β² , π’β²β²β² all tend to zero as β£π₯β£ β β. Put π (π₯) π , πΉ (π₯)π(π₯) = . π4 = πΈπΌ πΈπΌ By using the Fourier transform, we obtain the solution ([2, pp. 63-64]) β« β 1 πΉ (π)π(π)πΊ(π₯ β π)ππ, (4.2) π’(π₯) = 3 2π ββ where ( ) ( ) π ππ π πΊ(π) = exp β β β£πβ£ sin β + . 2 2 4 Let π, π β β and π₯ β [βπ, π], (4.3) β π β [βπ, π], β 2 3 2 β π < βπ β π < π + π < π . 4π 4π Clearly, ( ) ( ) π π(π + π) π(π₯ β π) π β 0 < πΌ := sin β β + β€ sin . 4 4 2 2 Since } { } { πβ£π β πβ£ π(π + π) β€ πΊ(π₯ β π) β€ exp β β πΌ exp β β 2 2 we see that the condition 1 1 0 < π π β€ πΉ (π)πΊ(π₯ β π) β€ π π , (4.4) holds if { } { } 1 1 1 π(π + π) πβ£π β πβ£ β β 0 < exp π π β€ πΉ (π) β€ π π exp . πΌ 2 2 Thus, for βπ β€ π < π β€ π, the formal solution π’(π₯) satisο¬es the inequality { } β« π ( π )}βπ ππ(π + π) { π π β π’ (π₯)ππ₯ β₯ (π β π)πΌ exp β π΄π,π π 2 π (β« π )πβ1 β« π × π(π₯)ππ₯ πΉ π (π₯)π(π₯)ππ₯. π π 89 (4.5) (4.6) 4.2 The Helmholtz Equation We consider the Dirichlet problem for the Helmholtz equation in a half space of β3 , i.e. the determination of the bounded solution of (π₯, π¦) β β2 , Ξ3 π’(π₯, π¦, π‘) + ππ’(π₯, π¦, π‘) = 0, π‘ β β+ , π β β+ , (4.7) under the boundary value condition πΉ (π₯, π¦)π(π₯, π¦) β πΏ1 (β2 ). π’(π₯, π¦, 0) = πΉ (π₯, π¦)π(π₯, π¦), (4.8) Its solution has the form ([1, pp. 75-76]) ( π’(π₯, π¦, π‘) = 2π‘ π 2π ) 32 β« β β« β πΉ (π, π )π(π, π ) 3 ββ (π‘2 + β£π β π₯β£2 + β£π β π¦β£2 ) 2 ) ( β 2 2 2 × πΎ 3 π π‘ + β£π β π₯β£ + β£π β π¦β£ ππππ, ββ (4.9) 2 where πΎπ (π₯) denotes the McDonald function and for π = β πΎ 3 (π₯) = 2 π 2π₯ ( 1 1+ π₯ ) 3 2 (see [9, Supp. 10]): πβπ₯ . We rewrite (4.9) as π‘ π’(π₯, π¦, π‘) = 2π β« β β« β πΉ (π, π )π(π, π )πΊ(π β π₯, π¦ β π )ππππ, ββ where πΊ(π, π ) = (4.10) ββ 1+π (π‘2 β π‘2 + π 2 + π 2 + π2 + 9 πβπ β π‘2 +π 2 +π 2 . π 2) 4 Let π1 , π2 , π1 , π2 , π1 , π2 , π1 , π2 be some real numbers and π₯ β [π1 , π2 ], π β [π1 , π2 ], π¦ β [π1 , π2 ], π β [π1 , π2 ]. Denote πΌ = max{β£π1 β π1 β£, β£π1 β π2 β£, β£π2 β π1 β£, β£π2 β π2 β£}, π½ = max{β£π1 β π1 β£, β£π1 β π2 β£, β£π2 β π1 β£, β£π2 β π2 β£}. We have 1 + ππ‘ 0< Thus β« π2 βπ β π‘2 +πΌ2 +π½ 2 (π‘ + πΌ2 + π½ 2 ) 4 β« π2 βπ ππ¦ π1 βπ βπ 9 π π1 βπ πΊπ (π₯, π¦)ππ₯ β₯ β€ πΊ(π β π₯, π¦ β π ) β€ (π2 β π1 )(π2 β π1 )(1 + ππ‘)π (π‘ + πΌ2 + π½ 2 ) 90 9π 4 πβππ 1 9 π‘2 . β π‘2 +πΌ2 +π½ 2 . REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS 91 Hence, for a function πΉ satisfying 1 9 (π‘ + πΌ2 + π½ 2 ) 4 πβπ‘2 +πΌ2 +π½ 2 π1 0< π π β€ πΉ (π, π ) β€ π π π‘ 2 1 + ππ‘ 9 (4.11) and for a positive continuous function π on [π1 , π2 ] × [π1 , π2 ], we obtain β« π2 β« π2 π’π (π₯, π¦, π‘)ππ₯ ππ¦ π1 π1 π‘π (1 + ππ‘)π β₯ (π2 β π1 )(π2 β π1 ) βππ 9π π (2π)π (π‘ + πΌ2 + π½ 2 ) 4 )πβ1 β« π2 β« (β« π2 β« π2 π(π, π )ππ ππ × ππ π1 4.3 π1 β π‘2 +πΌ2 +π½ 2 { ( π )}β2π π΄π,π π (4.12) π2 πΉ π (π, π )π(π, π )ππ. π1 π1 The Cauchy Problem for the Inhomogeneous Heat Equation The equation of heat conduction with sources is given by π’π‘ (π‘, π) β π2 Ξπ π’(π‘, π) = πΉ (π‘, π)π(π‘, π), (π‘, π) β β+ × βπ , (4.13) where πΉ π β πΏ1 for every π‘ β β+ , under the initial value condition π’(0, π) = 0. (4.14) Its solution has the form (see [1, pp. 58-59]) 1 π’(π‘, π) = (4ππ2 )π/2 π‘ β« β« ππ 0 βπ { } πΉ (π, π)π(π, π) β£π β πβ£2 exp β 2 ππ. (π‘ β π )π/2 4π (π‘ β π ) Take πΊ(π, π ) = 1 π π/2 (4.15) { } β£πβ£2 exp β 2 . 4π π Let π β [βπ, π], Since 1 π/2 π2 π β [βπ, π], π‘ β [π1 , π2 ], π1 > 0. { } { } β£π + πβ£2 1 β£π β πβ£2 1 exp β < exp β < , π/2 4π2 π1 (π‘ β π )π/2 4π2 π π1 we see that the condition 1 1 0 < π π < πΉ (π, π )πΊ(π β π, π‘ β π ) < π π holds if 0< π/2 π2 { exp β£π + πβ£2 4π2 π1 } 1 1 (4.16) π/2 π π < πΉ (π, π ) < π π π1 . 91 (4.17) Thus, for βπ < π , π < π, the inequality (3.10) yields β« π2 β« π π’π (π, π‘)ππ ππ‘ π π1 } { ( π )}β(π+1)π 1 (π β π ) β£π + πβ£2 { β₯ π΄ exp βπ π,π (4ππ2 )ππ/2 π2ππ/2 4π2 π1 π )πβ1 β« π2 (β« π2 β« π β« π πΉ π (π, π‘)π(π, π‘)ππ, (π2 β π‘)ππ‘ π(π, π‘)ππ × ππ‘ π1 π π1 (4.18) π where π is a positive continuous function on [π , π] × [π1 , π2 ], and πΉ satisο¬es (4.17). References [1] Yu. A. Brychkov, H. J. Glaeske, A. P. Prudnikov, Vu Kim Tuan, Multidimensional Integral Transformations, Gordon and Breach Science Publishers, New York - Reading, 1992. [2] L.Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman & Hall/CRC, Boca Raton, 2007. [3] D. T. Duc and N. D. V. Nhan, On some reverse weighted πΏπ (βπ )βnorm inequalities in convolutions and their applications, Math. Inequal. Appl. 12(2009), no. 1, 67-80. [4] D. S. MitrinovicΜ, J. E. PecΜaricΜ, and A. M. Fink, Classic and New Inequalities in Analysis, Kluwer Academic Publishers, The Netherlands, 1993. [5] N. D. V. Nhan, D. T. Duc, Fundamental inequalities for the iterated Laplace convolution in weighted πΏπ Spaces and their applications, to appear in Integr. Transform. and Special Funct.. [6] N. D. V. Nhan, D. T. Duc, Fundamental iterated convolution inequalities in weighted πΏπ spaces and their applications, Math. Inequal. Appl., 12 (2009), no. 3, 487-498. [7] N. D. V. Nhan, D. T. Duc and V. K. Tuan, Weighted πΏπ βnorm inequalities for various convolution type transformations and their applications, manuscript. [8] N. D. V. Nhan and D. T. Duc, Reverse weighted πΏπ βnorm inequalities and their applications, J. Math. Inequal. 2(2008), no. 1, 57-73. [9] A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton, 1998. [10] S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse weighted πΏπ - norm inequalities in convolutions and stability in inverse problems, J. of Inequal. Pure and Appl. Math., 1(1) (2000), Article 7. [Online: http://jipam.vu.edu.au/v1n1/018β 99.html]. 92 REVERSE CONVOLUTION INEQUALITIES AND THEIR APPLICATIONS [11] S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems, J. of Inequal. Pure and Appl. Math., 3(5) (2002), Article 80. [Online: http://jipam.vu.edu.au/v3n5/029β 99.html]. [12] S. Saitoh, V. K. Tuan and M. Yamamoto, Convolution inequalities and applications, J. of Inequal. Pure and Appl. Math., 4(3) (2003), Article 50. [Online: http://jipam.vu.edu.au/v4n3/138β 02.html]. [13] Vu Kim Tuan, Integral transforms of Fourier cosine convolution type, J. Math. Anal. Appl. 229(1999), 519-529. [14] Xiao-Hua, L., On the inverse of HoΜlder inequality, Math. Practice and Theory, 1(1990), 84-88. 93 93
© Copyright 2025 Paperzz