Journal of Indian Research (ISSN: 2321-4155) Vol.3, No.3, July-September, 2015, 42-52 Engonomics MEASURING TECHNICAL, SCALE, COST AND ALLOCATIVE EFFICIENCY IN THE MANUFACTURE OF BASIC METALS IN INDIA USING DATA ENVELOPMENT ANALYSIS Dr. M. Manonmani* ABSTRACT 7KHUH DUH WZR DSSURDFKHV IRU HVWLPDWLRQ RI HI¿FLHQF\ YL] WKH 6WRFKDVWLF )URQWLHU Approach (SFA) and Data Envelopment Approach (DEA). While the SFA (econometric DSSURDFKHVWLPDWHVWKHHI¿FLHQF\RIWKH¿UPVE\HVWLPDWLQJWKHSURGXFWLRQIXQFWLRQ the DEA technique involves the use of mathematical programming to estimate the HI¿FLHQF\RIWKH¿UPVLQGXVWU\)RUWKHSHULRGWRWKHFDOFXODWLRQV RQ WKH HI¿FLHQF\ RI 'HFLVLRQ 0DNLQJ 8QLWV '08V LQ WKH PDQXIDFWXUH RI EDVLF metals in India have been done. The paper demonstrates that the technical, scale, FRVW DQG DOORFDWLYH HI¿FLHQW '08V ZHUH PRUH XQGHU 9DULDEOH 5HWXUQV WR 6FDOH (VRS) production technology in comparison with Constant Returns to Scale (CRS) production technology. Keywords: $OORFDWLYHHI¿FLHQF\%&&02'(/&&50RGHOFRVWHI¿FLHQF\'HFLVLRQ 0DNLQJ8QLWV'08VFDOHHI¿FLHQF\9DULDEOH5HWXUQVWR6FDOH956 INTRODUCTION India’s manufacturing sector is vital for its economic progress. The contribution of manufacturing to overall GDP is meager 17.2 per cent (2014-15). The government has realized the importance of this sector to the country’s industrial development, and has taken a number of proactive steps to further enhance the industry. Manufacturing Industry in India has gone through various phases of development over the period of time. Since independence in 1947, the Indian manufacturing sector has traveled from the initial phase of building the industrial foundation in 1950’s and early 1960’s, to the license–permit Raj during the period of 1965–1980, to a phase of liberalization of 1990’s, emerging into the *Dr. M. Manonmani is Professor in Economics at the Avinashilingam Institute For Home Science And Higher Education For Women,Coimbatore-43,E-mail:[email protected]. 42 Journal of Indian Research Vol.3, No.3, July-September, 2015 current phase of global competitiveness. It has grown at a robust rate over the past ten years and has been one of the best performing manufacturing economy. Studies have estimated that every job created in manufacturing has a multiplier effect, creating 2–3 jobs in the services sector. In a country like India, where employment generation is one of the key policy issues, this makes manufacturing a critical sector to achieve inclusiveness in growth. The metal sector is a key part of manufacturing. It is highly sensitive to changes in the business cycle. It is considered a capital- (basic metals), labour- (fabricated metal products) and energy-intensive industry, producing a wide range of products e.g. basic metals, tanks, steam generators, cutlery, tools, light metal packaging, wires etc. The metal industry is an important component of the world economy when measured by its share of GDP worldwide. In sub-branches such as metal production, non-electrical machinery, electrical machinery and transport equipment, it employs some 70 million workers worldwide, who account for nearly half of the goods produced in the manufacturing sector and more than half of all merchandise exported worldwide (in terms of value).Consequently, the metal industry is both a driving IRUFHRIWKHZRUOGHFRQRP\DQGLVLQÀXHQFHGWRDODUJHH[WHQWE\WKHRYHUDOOZRUOGHFRQRPLF climate. METHODOLOGY 1. Data Base of the Study 7KHEDVLFGDWDVRXUFHRIWKHVWXG\RQ¿[HGFDSLWDO wages, net value added and number of workers was Annual Survey of Industries (ASI) published by the Central Statistical Organisation (CSO), Government of India. All the referred variables were normalised by DSSO\LQJ*URVV6WDWH'RPHVWLF3URGXFW*6'3GHÀDWRU7KH*6'3DWFXUUHQWDQGFRQVWDQW prices were obtained by referring to the Economic Survey, published by the Government of India, Economic Division of the Ministry of Finance, New Delhi .The reference period chosen for the study covers post- liberalization period between 2000-01 and 2011-12.The availability RIGDWDLVFRQ¿QHGRQO\XSWRWKLVSHULRG 2. Tools of Analysis DEA Model 7KHUH DUH EDVLFDOO\ WZR DSSURDFKHV IRU HVWLPDWLRQ RI HI¿FLHQF\ YL] WKH 6WRFKDVWLF Frontier Approach (SFA) and Data Envelopment Approach (DEA). While the Stochastic )URQWLHU$SSURDFKHFRQRPHWULFDSSURDFKHVWLPDWHVWKHHI¿FLHQF\RIWKH¿UPVE\HVWLPDWLQJ the production function, the DEA technique involves the use of mathematical programming WR HVWLPDWH WKH HI¿FLHQF\ RI WKH ¿UPV LQGXVWU\ '($ LV D QRQSDUDPHWULF GHWHUPLQLVWLF PHWKRGRORJ\IRUGHWHUPLQLQJUHODWLYHO\HI¿FLHQWSURGXFWLRQIURQWLHUEDVHGRQWKHHPSLULFDO data on chosen inputs and outputs of a number of entities called Decision Making Units '08V )URP WKH VHW RI DYDLODEOH GDWD '($ LGHQWLI\ UHIHUHQFHSRLQWV UHODWLYHO\ HI¿FLHQW '08VWKDWGH¿QHHI¿FLHQWIURQWLHUDVWKHEHVWSUDFWLFHSURGXFWLRQWHFKQRORJ\DQGHYDOXDWH WKHLQHI¿FLHQF\RIRWKHULQWHULRUSRLQWVUHODWLYHO\LQHI¿FLHQW'08VWKDWDUHEHORZWKHIURQWLHU (Saon Ray, 2004). 7KH '($ SURYLGHV D PHDVXUH RI HI¿FLHQF\ WKDW DOORZV LQWUD¿UP FRPSDULVRQ DV WKH Dr. M. Manonmani 43 Journal of Indian Research Vol.3, No.3, July-September, 2015 HI¿FLHQF\PHDVXUHLVDSXUHQXPEHU7KHPDLQDGYDQWDJHRI'($LVWKDWXQOLNH6)$LWGRHV not require a priority assumption about the analytical form of the production function. Instead, it constructs the best practice production solely on the basis of observed data and therefore the SRVVLELOLW\RIPLVVSHFL¿FDWLRQRIWKHSURGXFWLRQWHFKQRORJ\LVPLQLPL]HG,QWKHFDVHRI6)$ WKHSDUDPHWHUHVWLPDWHVDUHVHQVLWLYHWRWKHFKRLFHRIWKHSUREDELOLW\GLVWULEXWLRQVSHFL¿HGIRU the disturbance term. 7KHUHDUHWZRDSSURDFKHVWRHVWLPDWLQJWKHHI¿FLHQF\RIWKH¿UPLQWKH'($DSSURDFK YL]WKHRXWSXWRULHQWHGHI¿FLHQF\DQGWKHLQSXWRULHQWHGHI¿FLHQF\,QWKHRXWSXWRULHQWHG DSSURDFK HI¿FLHQF\ LV GHWHUPLQHG E\ PD[LPXP RXWSXW WKDW FDQ EH SURGXFHG IURP DQ LQSXWEXQGOH,QWKHLQSXWEDVHGPHDVXUHWKHWHFKQLFDOHI¿FLHQF\RIWKH¿UPLVHYDOXDWHG by the extent to which all inputs could be proportionally reduced without a reduction in the output. Among number of DEA models, the two most frequently used ones (inputoriented) are, CCR model (after Charnes, Cooper, Rhodes, 1978) and BCC model (after Banker, Charnes and Cooper, 1984), both of which are used in the study. The DEA model LV XVHG WR HVWLPDWH WKH WHFKQLFDO VFDOH FRVW DQG DOORFDWLYH HI¿FLHQF\ RI WKH LQGXVWULHV under study. I. TECHNICAL EFFICIENCY (i) CCR Model ( based on constant returns to scale) &KDUQHV&RRSHUDQG5KRGHVLQWURGXFHGDPHDVXUHRIHI¿FLHQF\IRUHDFK'08WKDW is obtained as a maximum of ratio of weighted outputs to weighted inputs. The weights for the ratio are determined by a restriction that the similar ratios for every DMU have to be less than or equal to unity, thus reducing multiple inputs and outputs to single “virtual” output without requiring pre-assigned weights. 7KH HI¿FLHQF\ PHDVXUH LV WKHQ D IXQFWLRQ RI ZHLJKWV RI WKH ³YLUWXDO´ LQSXWRXWSXW FRPELQDWLRQ)RUPDOO\WKHHI¿FLHQF\PHDVXUHIRUWKH'08FDQEHFDOFXODWHGE\VROYLQJWKH following mathematical programming problem: S ∑u Y r r o r =1 S max h0(u,v) = ∑v x ……………………….(1) i io i =1 S ∑u Subject to ∑v i =1 44 r r =1 m i Yr x j i j ≤ 1, j = 1,2......, j o ,......, n........................................(2) urU V viM P Journal of Indian Research Vol.3, No.3, July-September, 2015 where the observed amount of input of the ith type of the DMU > 0, i = 1,2,......n, j = 1,2,.....n) and = the observed amount of output of the rth type for the jth DMU (Yrj > 0, r = 1,2,.....s, j = 1,2,...n). The variables Ur , and Vi are the weights to be determined by the above programming SUREOHP+RZHYHUWKLVSUREOHPKDVLQ¿QLWHQXPEHURIVROXWLRQVVLQFHLIXYLVRSWLPDO WKHQIRUHDFKSRVLWLYHVFDODUĮĮXĮYLVDOVRRSWLPDO)ROORZLQJWKH&KDUQHV&RRSHU transformation (1962), one can select a representative solution (u,v) for which to obtain a linear programming problem that is equivalent to the linear fractional programming problem 7KXVGHQRPLQDWRULQWKHDERYHHI¿FLHQF\PHDVXUHK0 is set to equal one and the transformed linear problem for DMU can be written. m ∑v x i =1 i i o =1 ........................... (5) S max z0 = ∑u Yr o r r =1 ......................... (6) S Subject to ∑ urYr r =1 m ∑v m j −∑ vi xi j ≤ 0, j = 1,2,..., n......................(7) r =1 xi o = 1 i r =1 urU V ...................... (8) 0, i = 1,2,...., m ...................... (10) For the above linear programming problem, the dual can be written (for the given DMU) as: min z0 Ĭo Subject to ..................... (11) n ∑ λr Y \ro r = 1,2,...,s r j ................ (12) j =1 n ĬR[io – ∑λ j xij ≥ 0, i = 1,2,..., m ...................... (13) j =1 Ȝj M Q Dr. M. Manonmani 45 Journal of Indian Research Vol.3, No.3, July-September, 2015 %RWKRIWKHDERYHOLQHDUSUREOHPV\LHOGWKHRSWLPDOVROXWLRQĬZKLFKLVWKHHI¿FLHQF\ VFRUH VRFDOOHG 7HFKQLFDO HI¿FLHQF\ RU &&5 HI¿FLHQF\ IRU WKH SDUWLFXODU '08 DQG repeating them for each DMUjM QHI¿FLHQF\VFRUHVIRUDOORIWKHPDUHREWDLQHG 7KHYDOXHRIĬLVDOZD\VOHVVWKDQRUHTXDOWRXQLW\VLQFHZKHQWHVWHGHDFKSDUWLFXODU DMU is constrained by its own virtual input-output combination too). DMUs for which ĬDUHUHODWLYHO\LQHI¿FLHQWDQGWKRVHIRUZKLFKĬ DUHUHODWLYHO\HI¿FLHQWKDYLQJ their virtual input-output combination points lying on the frontier. The frontier itself FRQVLVWVRIOLQHDUIDFHWVVSDQQHGE\HI¿FLHQWXQLWVRIWKHGDWDDQGWKHUHVXOWLQJIURQWLHU production function (obtained with the implicit constant returns to scale assumption) has no unknown parameters. (ii) BCC Model ( based on Constant Returns to Scale ) 6LQFHWKHUHDUHQRFRQVWUDLQWVIRUWKHZHLJKWVȜj , other than the positivity conditions in the problem (11) - (14), it implies constant returns to scale. For allowing variable returns to scale, LWLVQHFHVVDU\WRDGGWKHFRQYH[LW\FRQGLWLRQIRUWKHZHLJKWVȜj, i.e. to include in the model (11) - (14) the constraint: n ∑λ j =1 .................... (15) j =1 The resulting DEA model that exhibits variable returns to scale is called BCC model, after Banker, Charnes and Cooper (1984). The input-oriented BCC model for the DMU0 can be written formally as: min z0 ĬR Subject to n ∑λ r j =1 Yr j ≥ Yr o r = 1,2,..., s n Ĭoxio – n ∑λ j ∑λ j =1 j .................... (17) xi j ≥ 0, i = 1,2,..., m ..................... (18) =1 ..................... (19) j =1 Ȝj M Q 5XQQLQJWKHDERYHPRGHOIRUHDFK'08WKH%&&HI¿FLHQF\VFRUHVDUHREWDLQHGZLWK similar interpretation of its values as in the CCR model). These scores are also called ³SXUH WHFKQLFDO HI¿FLHQF\ VFRUHV´ VLQFH WKH\ DUH REWDLQHG IURP WKH PRGHO WKDW DOORZV YDULDEOHUHWXUQVWRVFDOHDQGKHQFHHOLPLQDWHWKH³VFDOHSDUW´RIWKHHI¿FLHQF\IURPWKH DQDO\VLV *HQHUDOO\ IRU HDFK '08 WKH &&5 HI¿FLHQF\ VFRUH ZLOO QRW H[FHHG WKH %&& 46 Journal of Indian Research Vol.3, No.3, July-September, 2015 HI¿FLHQF\VFRUHZKDWLVLQWXLWLYHO\FOHDUVLQFHLQWKH%&&PRGHOHDFK'08LVDQDO\]HG “locally” (i.e. compared to the subset of DMUs that operate in the same region of returns to scale) rather than “globally”. II. SCALE EFFICIENCY Following the scale properties of the above two models, (Cooper et al., 2000) the scale HI¿FLHQF\LVGH¿QHGDVIROORZV)RUDSDUWLFXODU'08WKHVFDOHHI¿FLHQF\LVGH¿QHGDVD UDWLRRILWVRYHUDOOWHFKQLFDOHI¿FLHQF\VFRUHPHDVXUHGE\WKH&&5PRGHODQGSXUHWHFKQLFDO HI¿FLHQF\VFRUHPHDVXUHGE\WKH%&&PRGHO III. COST EFFICIENCY 7KHVWDQGDUGPHDVXUHRIFRVWHI¿FLHQF\LVREWDLQHGYLDWZRVWDJHSURFHVV (i) Estimate the minimum price-adjusted resource usage given technological constraints; DQGLL&RPSDUHWKLVPLQLPXPWRDFWXDOREVHUYHGFRVWV&RVWHI¿FLHQF\FDQEHPHDVXUHGLI input prices are available in addition to output and input data. Let x =(x1, ....xkİ5+k denotes a vector of inputs and y = (y1, ....ymİ5+m denote vector of outputs. Formally, the cost HI¿FLHQF\PRGHOFDQEHVSHFL¿HGDV m Minz,x ∑w VW ]<\ j =1 j o xj ..................... (21) 0 ][[0 ]L n ∑z i =1 i =1 where Y is an n x m matrix of observed outputs for n industries and x is an n x k matrix of inputs for each industry. z is a l x n vector of intensity variables and w = (w1,...wk) İ5+k GHQRWHGLQSXWSULFHV7KHFRQVWUDLQWVRIWKHPRGHOGH¿QHWKHLQSXWUHTXLUHPHQW set given by: n /\ []\\ ][[]i 0 ∑z i = 1 ) ..................... (22) i =1 7KHLQSXWUHTXLUHPHQWVHWVSHFL¿HVDFRQYH[WHFKQRORJ\ZLWK9DULDEOH5HWXUQVWR6FDOH n (VRS), which is imposed by the constraint ∑z i = 1 . Leaving the constraint out of the model i =1 changes the technology to Constant Returns to Scale (CRS). Dr. M. Manonmani 47 Journal of Indian Research Vol.3, No.3, July-September, 2015 IV. ALLOCATIVE EFFICIENCY $OORFDWLYHHI¿FLHQF\LVGH¿QHGDVDUDWLRRIFRVWHI¿FLHQF\VFRUHWRWHFKQLFDOHI¿FLHQF\ VFRUH%RWKXQGHU&56SURGXFWLRQWHFKQRORJ\DQG956SURGXFWLRQWHFKQRORJ\WKLVHI¿FLHQF\ score was estimated for the present study. RESULTS AND DISCUSSION $7HFKQLFDO(I¿FLHQF\ 7KH UHVXOWV UHJDUGLQJ WHFKQLFDO HI¿FLHQF\ VFRUHV RI WKH VHOHFWHG LQWHUPHGLDU\ JRRGV industries are presented in Table-1. 7DEOH7HFKQLFDO(I¿FLHQF\7((VWLPDWHV DMUs CRS* VRS** 2002-03 0.324 1.000 2003-04 0.470 1.000 2004-05 0.595 1.000 2005-06 0.959 1.000 2006-07 0.669 0.865 2007-08 0.853 0.872 2008-09 1.000 1.000 2009-10 0.736 0.785 2010-11 0.778 0.814 2011- 12 0.780 0.791 $YHUDJH7HFKQLFDO(I¿FLHQF\ 0.716 0.913 $YHUDJH7HFKQLFDO,QHI¿FLHQF\ 0.397 0.095 1RRI7HFKQLFDOLQHI¿FLHQW'08V 1 5 CRS*- Constant Returns to scale; VRS*- Variable Returns to scale; (Source: Calculations based on ASI data) 8QGHU &RQVWDQW 5HWXUQV WR 6FDOH &56 SURGXFWLRQ WHFKQRORJ\ WHFKQLFDO HI¿FLHQF\ between 2002-03 and 2011- 12 was 0.716. This implied that the industry would have needed RQO\SHUFHQWRIWKHLQSXWVFXUUHQWO\EHLQJXVHG,QWHUPVRIDYHUDJHLQHI¿FLHQF\LWZRXOG have needed 28.4 percent more inputs to produce the same output, which meant waste of resources to the extent mentioned above. 8QGHU956SURGXFWLRQWHFKQRORJ\WKHQXPEHURIHI¿FLHQW'08VH[FHHGHGWKHQXPEHURI HI¿FLHQW'08VXQGHU&56SURGXFWLRQWHFKQRORJ\8QGHU956SURGXFWLRQWHFKQRORJ\KLJKHU DYHUDJHHI¿FLHQF\ZDVDOZD\VUHFRUGHG,WPD\EHGXHWRWKHUHDVRQWKDW'08VWKDWZHUH 48 Journal of Indian Research Vol.3, No.3, July-September, 2015 HI¿FLHQWXQGHU&RQVWDQW5HWXUQVRI6FDOH&56ZHUHDFFRPSDQLHGE\WKHQHZHI¿FLHQW'08V that might operate under increasing or decreasing return to scale. Higher degree of average WHFKQRORJ\LQHI¿FLHQF\SDUWLFXODUO\XQGHUFRQVWDQWUHWXUQWRVFDOHSURGXFWLRQWHFKQRORJ\FDQ EH DWWULEXWHG WR WKH IDFW WKDW WKH LQGXVWU\ PD\ QRW EH XVLQJ WKH PRVW HI¿FLHQW WHFKQRORJ\ available to transform the input into outputs due to differences in products, the industry was likely to have different best practice frontiers; relatively small regional spheres of operation RIWKHLQGXVWU\PD\KDYHUHVXOWHGLQLQHI¿FLHQFLHVDQGVWUXFWXUHGSUREOHPVUHJDUGLQJVWDII HI¿FLHQF\DQGRSHUDWLQJHI¿FLHQF\PD\KDYHSUHYHQWHGWKH¿UPIURPLPSURYLQJLWVHI¿FLHQF\ OHYHO,WFDQEHFRQFOXGHGWKDWWKRXJKWKHHI¿FLHQF\RIWKH¿UPVYDULHGFRQVLGHUDEO\RQDFFRXQW RIWKHYDULRXVUHDVRQVPHQWLRQHGWKH¿UPZDVHVWLPDWHGWREHRQWKHIURQWLHUVDWOHDVWRQFH,Q RWKHUZRUGVERWKXQGHU&56DQG956WHFKQRORJ\WKHQXPEHURIHI¿FLHQF\VFRUHVRUOHYHOV GXULQJWKHHQWLUHSHULRGZDVLQGLFDWLYHRIWKHIDFWWKDWWKHHI¿FLHQF\RI¿UPZDVQRWVWURQJO\ LQÀXHQFHGE\WKHVL]HRISURGXFWLRQ %6FDOH(I¿FLHQF\ 7KHVFDOHHI¿FLHQF\VFRUHVLVSUHVHQWHGLQ7DEOH 7DEOH6FDOH(I¿FLHQF\6((VWLPDWHV DMU CRS*(TE) VRS(TE) 6FDOH(I¿FLHQF\ RTS** (CRS(TE) / RS(TE) 2002-03 0.324 1.000 0.324 IRS*** 2003-04 0.470 1.000 0.470 IRS 2004-05 0.595 1.000 0.595 IRS 2005-06 0.959 1.000 0.959 IRS 2006-07 0.669 0.865 0.774 IRS 2007-08 0.853 0.872 0.978 IRS 2008-09 1.000 1.000 1.000 CRS 2009-10 0.736 0.785 0.938 IRS 2010-11 0.778 0.814 0.955 IRS 2011- 12 0.780 0.791 0.986 IRS $YHUDJH6FDOH(I¿FLHQF\ 0.716 0.913 0.798 $YHUDJH6FDOH,QHI¿FLHQF\ 0.716 0.913 0.253 5 1 1RRI6FDOH,QHI¿FLHQW'08V 1 CRS* – Constant Returns to Scale; RTS** - Returns to Scale; IRS*** - Increasing 5HWXUQVWR6FDOH$YHUDJHVFDOHLQHI¿FLHQF\ (Source: Calculations based on ASI data) Dr. M. Manonmani 49 Journal of Indian Research Vol.3, No.3, July-September, 2015 '($UHVXOWVDSSOLHGWRNQRZWKHVFDOHHI¿FLHQF\RILQGXVWULHVIRUWKHHQWLUHSHULRGUHYHDOHG WKDWWKHLQGXVWULHVZHUHQRWRSHUDWLQJDWDQRSWLPXPVFDOH7KHDYHUDJHVFDOHHI¿FLHQF\ZDV SHUFHQW,QWHUPVRIDYHUDJHLQHI¿FLHQF\LWFRXOGLQFUHDVHDGGLWLRQDOSURGXFWLRQWRWKH extent of 15.4 percent, by taking advantage of their scale characteristics. DEA allows to assess ZKHWKHUD¿UPOLHVLQWKHUDQJHRILQFUHDVLQJFRQVWDQWDQGGHFUHDVLQJUHWXUQVWRVFDOH,QRWKHU ZRUGVLWUHYHDOHGWKHVFDOHFKDUDFWHULVWLFVRI'08V,IPDUNHWFRQWDLQV¿UPVVFDOHPDUNHW HI¿FLHQF\ FDQ EH LQFUHDVHG LI PRUH '08V DWWDLQ FRQVWDQW UHWXUQV WR VFDOH EHFDXVH IHZHU resources are wasted. The measurement of economies of scale, therefore, helps assess at the VDPHWLPHZKHWKHUKLJKHUPDUNHWFRQFHQWUDWLRQVKRXOGEHHQFRXUDJHGWRLPSURYHHI¿FLHQF\$ '08PD\EHVFDOHLQHI¿FLHQWLILWH[SHULHQFHVGHFUHDVLQJUHWXUQVWRVFDOHRULILWKDVQRWWDNHQ IXOODGYDQWDJHVRILQFUHDVLQJUHWXUQVWRVFDOH,QGHHGPRVWRIWKHLQHI¿FLHQW'08VSUHVHQWHG increasing returns to scale characteristics which indicated that industries can increase the scale WRHIIHFWLYHO\LPSURYHWKDWHI¿FLHQF\ C. &RVWHI¿FLHQF\ 7DEOHJLYHVGHWDLOVUHJDUGLQJFRVWHI¿FLHQF\VFRUHVRIVHOHFWHGLQGXVWULHVIRUWKHUHIHUHQFH period under study. 7DEOH&RVW(I¿FLHQF\&((VWLPDWHV DMU 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011- 12 $YHUDJH&RVW(I¿FLHQF\ CRS* 0.269 0.405 0.548 0.882 0.643 0.798 1.000 0.703 0.650 0.668 0.657 VRS** 1.000 0.999 0.975 1.000 0.825 0.860 1.000 0.737 0.674 0.676 0.875 $YHUDJH&RVW,QHI¿FLHQF\ 1RRI&RVWHI¿FLHQW'08V 0.522 1 0.142 3 CRS*- Constant Returns to scale; VRS**- Variable Returns to scale; $YHUDJHFRVWLQHI¿FLHQF\ (Source: calculations are based on ASI data) 50 Journal of Indian Research Vol.3, No.3, July-September, 2015 8QGHU&RQVWDQW5HWXUQVWR6FDOH&56WHFKQRORJ\WKHLQGXVWU\ZDVHI¿FLHQWWRWKHH[WHQW of 65.7 percent. Under Variable Returns to Scale (VRS) production technology the industry ZDVPRUHHI¿FLHQWWRWKHH[WHQWRISHUFHQW7KHFRVWHI¿FLHQW'08VLWZDVIRXQGWREH PRUHXQGHU956SURGXFWLRQWHFKQRORJ\7KHDYHUDJHFRVWLQHI¿FLHQF\ZDVPRUHXQGHU&56 production technology than under VRS production technology. '$OORFDWLYHHI¿FLHQF\ $OORFDWLYHHI¿FLHQF\VFRUHVRIWKHLQGXVWULHVXQGHUWKHUHIHUHQFHSHULRGLVSUHVHQWHGLQ Table.4. 7DEOH$OORFDWLYH(I¿FLHQF\$((VWLPDWHV DMU 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011- 12 $YHUDJH$OORFDWLYH(I¿FLHQF\ CRS 0.831 0.861 0.921 0.920 0.961 0.936 1.000 0.956 0.836 0.857 0.908 VRS 1.000 0.999 0.975 1.000 0.954 0.986 1.000 0.939 0.828 0.855 0.875 $YHUDJH$OORFDWLYH,QHI¿FLHQF\ 0.101 0.143 1RRI$OORFDWLYHHI¿FLHQW'08V ,QHI¿FLHQW'08V CRS*- Constant Returns to scale; VRS**Variable Returns to scale $YHUDJH$OORFDWLYHLQHI¿FLHQF\ (Source: Calculations are based on ASI data) 1 3 Estimates revealed that over the study period, the industries under CRS production WHFKQRORJ\ KDG RQ DQ DYHUDJH DOORFDWLYH HI¿FLHQF\ OHYHO RI SHUFHQW LPSO\LQJ WKDW WKH LQGXVWULHV ZHUH SHUFHQW LQHI¿FLHQW UHVSHFWLYHO\ ,Q WKH FDVH RI 956 SURGXFWLRQ WHFKQRORJ\DQDYHUDJHDOORFDWLYHHI¿FLHQF\RISHUFHQWKDVEHHQPHDVXUHGLPSO\LQJ WKDW WKH LQGXVWULHV ZHUH RQ DQ DYHUDJH SHUFHQW LQHI¿FLHQW 0RUH HI¿FLHQW '08V were observed in VRS production technology in comparison with the CRS production technology. Dr. M. Manonmani 51 Journal of Indian Research Vol.3, No.3, July-September, 2015 CONCLUSION )RUWKHHQWLUHSHULRGWHFKQLFDOVFDOHFRVWDQGDOORFDWLYHHI¿FLHQW'08VZHUHPRUHXQGHU Variable Returns to Scale (VRS) production technology in comparison with Constant Returns WR6FDOH&56SURGXFWLRQWHFKQRORJ\,WLVYHU\FOHDUWKDWLQHI¿FLHQF\FRXOGEHGXHWRWKH existence of either increasing or decreasing returns to scale. REFERENCES 1. Banker.R.D Charnes.A & Cooper.W.W (1984). Some Models For Estimating Technical $QG 6FDOH ,QHI¿FLHQFLHV ,Q 'DWD (QYHORSPHQW $QDO\VLV Management Science, Volume. 30, pp.1078-2092. 2. &KDUQHV$ &RRSHU :: 5KRGHV( 0HDVXULQJ 7KH (I¿FLHQF\ 2I 'HFLVLRQ Making Units, European Journal Of Operation Research,Volume.2, pp.429-444. Available online at http://www.utdallas.edu/~ryoung/phdseminar/CCR1978.pdf 52
© Copyright 2026 Paperzz