1 http://www.Lohmander.com/mil/ORFAU1.pdf Operations Research for Army Units - Methodology for optimal combat decisions Peter Lohmander http://www.lohmander.com/ Version 2010-02-10 CASE 1. Figure 1.1. 2 A1 A2 A1 A2 X1 X2 B1 Y1 C11 0 B2 Y2 0 C22 X1 X2 B1 Y1 2 0 B2 Y2 0 1 c11 0 2 0 0 c 0 1 22 max E s.t. E c11 x1 0 x2 E 0 x1 c22 x2 1 x1 x2 0 x1 0 x2 x2 1 x1 if B1 if B2 3 max E s.t. E c11 x1 if E c22 (1 x1 ) max E B1 if B2 if if B1 s.t. E c11 x1 E c22 c22 x1 B2 max E s.t. E 2 x1 E 1 1x1 if if B1 B2 4 Figure 1.2. 2 x1 1 x1 3 x1 1 x1 1 0.33 3 1 2 x2 1 x1 1 0.67 3 3 2 E 2 x1 0.67 3 5 c11 0 2 0 0 c 0 1 22 min E s.t. E c11 y1 0 y2 E 0 y1 c22 y2 if if A1 A2 1 y1 y2 0 y1 0 y2 y2 1 y1 min E s.t. E c11 y1 E c22 (1 y1 ) if if A1 if if A1 A2 min E s.t. E c11 y1 E c22 c22 y1 A2 6 min E s.t. E 2 y1 E 1 y1 if if A1 A2 7 Figure 1.3. Figure 1.4. 8 CASE 2. Figure 2.1. p11 0 0 0 0 0 p22 0 0 p33 0 0 0 0.8 0 0 0 0 0 0.4 0 0 0 0 0 0.2 0 p44 0 0 0 0.9 9 max E s.t. E p11 x1 (if B1 ) E p22 x2 (if B2 ) E p33 x3 (if B3 ) E p44 x4 (if B4 ) 1 x1 x2 x3 x4 x1 0; x2 0; x3 0; x4 0 Assumption: All x’s are strictly positive. (The usual case.) E p11 x1 E p22 x2 E p33 x3 E p44 x4 E p11 x1 p22 x2 p33 x3 p44 x4 10 x1 E p11 x2 E p22 x3 E p33 x4 E p44 x1 x2 x3 x4 1 E E E E 1 p11 p22 p33 p44 1 1 1 1 1 p11 p22 p33 p44 E p22 p33 p44 p11 p33 p44 p11 p22 p44 p11 p22 p33 1 p11 p22 p33 p44 E 0.4 0.2 0.9 0.8 0.2 0.9 0.8 0.4 0.9 0.8 0.4 0.2 1 0.8 0.4 0.2 0.9 E 11 E 0.8 0.4 0.2 0.9 0.4 0.2 0.9 0.8 0.2 0.9 0.8 0.4 0.9 0.8 0.4 0.2 E 0.10140845 E 10% x1 E E 12.68% p11 0.8 x2 E E 25.35% p22 0.4 x3 E E 50.70 % p33 0.2 x4 E E 11.27 % p44 0.9 Figure 2.2. 12 p11 0 0 0 0 0 p22 0 0 p33 0 0 0 0.8 0 0 0 0 0 0.4 0 0 0 0 0 0.2 0 p44 0 0 0 0.9 min E s.t. E p11 y1 (if A1 ) E p22 y2 (if A2 ) E p33 y3 (if A3 ) E p44 y4 (if A4 ) 1 y1 y2 y3 y4 y1 0; y2 0; y3 0; y4 0 Assumption: All y’s are strictly positive. (The usual case.) E p11 y1 E p22 y2 E p33 y3 E p44 y4 E p11 y1 p22 y2 p33 y3 p44 y4 13 y1 E x1 p11 y2 E x2 p22 y3 E x3 p33 y4 E x4 p44 y1 y2 y3 y4 1 E E E E 1 p11 p22 p33 p44 1 1 1 1 1 p11 p22 p33 p44 E p22 p33 p44 p11 p33 p44 p11 p22 p44 p11 p22 p33 1 p11 p22 p33 p44 E 0.4 0.2 0.9 0.8 0.2 0.9 0.8 0.4 0.9 0.8 0.4 0.2 1 0.8 0.4 0.2 0.9 E 14 E 0.8 0.4 0.2 0.9 0.4 0.2 0.9 0.8 0.2 0.9 0.8 0.4 0.9 0.8 0.4 0.2 E 0.10140845 E 10% y1 E E 12.68% p11 0.8 y2 E E 25.35% p22 0.4 y3 E E 50.70 % p33 0.2 y4 E E 11.27 % p44 0.9 y1 x1 y 2 x2 y3 x3 y 4 x4 15 Figure 2.3. Test: Z x1 y1 p11 x2 y2 p22 x3 y3 p33 x4 y4 p44 Z 0.10140845 E 16 Figure 2.4. 17 Case 3. Complete example (in Swedish) with general software: http://www.lohmander.com/mil/2pzsg/Taktik_PL_1.htm Figure 3.1. 18 a11 a12 (9 1) (1 2) 8 1 a 21 a22 (5 6) (5 3) 1 2 max E s.t. E 8 x1 1x2 E 1x1 2 x2 1 x1 x2 x1 0; x2 0 x2 1 x1 max E s.t. E 8 x1 1(1 x1 ) E 1x1 2(1 x1 ) max E s.t. E 9 x1 1 E 2 3 x1 E 9 x1 1 2 3x1 12 x1 3 19 3 1 0.25 25% 12 4 x2 1 x1 75% x1 E 9 x1 1 9 4 5 1.25 4 4 4 Figure 3.2. a11 a12 8 1 a 21 a22 1 2 20 min E s.t. E 8 y1 1 y2 E 1 y1 2 y2 1 y1 y2 y1 0; y2 0 y2 1 y1 min E s.t. E 8 y1 1(1 y1 ) E 1 y1 2(1 y1 ) min E s.t. E 9 y1 1 E 2 3 y1 E 9 y1 1 2 3 y1 12 y1 3 y1 3 1 0.25 25% 12 4 y2 1 y1 75% 21 E 9 y1 1 Figure 3.3. 9 1 5 1.25 4 4 4 22 Figure 3.4. 23 Case 4. Complete example (in Swedish) with general software: http://www.lohmander.com/mil/ResFStri.html Figure 4.1. 24 Figure 4.2. Figure 4.3. 25 Table 1. Summary of results reported here: http://www.lohmander.com/mil/ResFStri.html (Value of one Probability object)/(Value of that attack one unit) = w with one unit per object is optimal Probability that a concentrated attack against only one object is optimal Probability that the defence should use one unit per object Probability that a concentrated defence of only one object is optimal 2 63% 37% 50% 50% 4 45% 55% 78% 22% 10 32% 68% 97% 3% Table 2. (Swedish version of Table 1.) Sammanfattning av resultat som rapporteras här: http://www.lohmander.com/mil/ResFStri.html (Värdet av ett Sannolikhet att objekt)/(värdet A bör anfalla av en grupp) = w med en grupp mot varje objekt Sannolikhet att A bör anfalla kraftsamlat med 2 grupper mot ett objekt Sannolikhet att B bör skydda varje objekt med en grupp per objekt Sannolikhet att B bör kraftsamla 2 grupper till skydd av ett objekt 2 63% 37% 50% 50% 4 45% 55% 78% 22% 10 32% 68% 97% 3%
© Copyright 2025 Paperzz