Discrete Time Rect Function(4B) ● Discrete Time Rect Functions Young Won Lim 4/20/13 Copyright (c) 2009 - 2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to [email protected]. This document was produced by using OpenOffice and Octave. Young Won Lim 4/20/13 Fourier Transform Types Discrete Time Fourier Transform ∞ j X e = ∑ 1 x [n] = 2π −j n x [n ] e n = −∞ +π ∫−π j ω̂ ̂n + jω X (e ) e Discrete Fourier Transform N−1 X [k ] = ∑ x [n] e 1 x [n ] = N − j2 / N k n n=0 DT Rect (4B) 3 N −1 ∑ j 2 / N k n X [k ] e k =0 Young Won Lim 4/20/13 DTFT and DTFS L = 2 N +1 1 L 2π ( L−1) zero crossings 0 −N +N jω ̂ X (e ) = DTFT (Discrete Time Fourier Transform) sin( ω ̂ L/2) jω ̂ = L D L (e ) ̂ 2) sin( ω/ = L⋅ diric( ω ̂ , L) L = 2 N +1 N0 1 L/ N 0 N0 ( L−1) zero crossings −N 0 +N 1 sin (π k L / N 0 ) N 0 sin (π k / N 0 ) L = ⋅drcl (k / N 0 , L) N0 X [k ] = DTFS (Discrete Time Fourier Series) DT Rect (4B) 4 Young Won Lim 4/20/13 DT Rect (4B) 5 Young Won Lim 4/20/13 RectN[n] DTFT Discrete Time Fourier Transform DTFT ∞ ∑ j X e = 1 x [n] = 2π −j n x [n ] e n = −∞ +N ∑ ̂ jω X (e ) = ̂ − j ωn e x [n] + j ω̂ N +⋯+ e = e +jω ̂N e − j ω(2 ̂ N +1)/2 = e +j ω ̂N − j ω̂ N {1 + ⋯ + e } = − jω ̂ 2N e + j ω(2 ̂ N +1)/ 2 } jω ̂ = e − jω ̂ (2 N +1) 1−e 1 − e− j ω̂ + j ω( ̂ 2 N +1)/ 2 e − j ω( ̂ 2 N +1)/ 2 = DT Rect (4B) − j ω(2 ̂ N +1)/ 2 sin( ω(2 ̂ N +1)/ 2) ̂ sin( ω/2) sin( ω ̂ L/2) jω ̂ = L D L (e ) ̂ 2) sin( ω/ Dirichlet Function jω ̂ 0 ̂ −e ̂ 2 ̂ 2 e+ j ω/ − e− j ω/ D L (e ) = −N ̂ = L⋅ diric( ω ̂ , L) L = 2 N +1 1 X (e j ω ) e+ j ω n −e ̂ 2 ̂ 2 e+ j ω/ − e− j ω/ X (e ) = +j ω ̂N ∫−π ̂ 2 e− j ω/ n=−N = {e +π sin( ω ̂ L/2) ̂ Lsin( ω/2) +N 6 Young Won Lim 4/20/13 Dirichlet Functions jω ̂ D9 (e ) jω ̂ D9(e ) = 2π jω ̂ D11 (e ) = jω ̂ D13 (e ) = 8 zero crossings jω ̂ D10 (e ) jω ̂ D 10 (e ) = 2π jω ̂ D12 (e ) = 9 zero crossings jω ̂ D14 (e ) = DT Rect (4B) 7 sin( ω ̂ 9/2) ̂ 9 sin ( ω/2) 8 zero crossings sin ( ω ̂ 11/ 2) ̂ 2) 11 sin( ω/ 10 zero crossings sin ( ω ̂ 13/ 2) ̂ 2) 13 sin( ω/ 12 zero crossings sin( ω ̂ 10 / 2) ̂ / 2) 10 sin ( ω 9 zero crossings sin ( ω ̂ 12/ 2) ̂ 2) 12 sin( ω/ 11 zero crossings sin( ω ̂ 14 /2) ̂ /2) 14 sin ( ω 13 zero crossings Young Won Lim 4/20/13 Magnitude Response 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -20 -15 DT Rect (4B) -10 -5 0 5 10 8 15 20 Young Won Lim 4/20/13 Phase Response 3.5 3 2.5 2 1.5 1 0.5 0 -20 -15 DT Rect (4B) -10 -5 0 5 10 9 15 20 Young Won Lim 4/20/13 DT Rect (4B) 10 Young Won Lim 4/20/13 RectN[n] * δN0[n] DTFS (1) Discrete Time Fourier Series 1 X [k] = N 1 X [k ] = N0 N−1 N−1 ∑ x [ n] e x [n]e − j (2 π/ N 0 )k n − j (2 π / N ) k n x [n] = = e + j (m) N k n=0 +N 1 − j (2 π/ N = x [n ]e ∑ N 0 n=−N + j (2 π N / N 0) k N 0 X [k ] = e = e + j (2 π/ N 0) N k L = 2 N +1 ∑ + j(2 π/ N )k n X [k] e k=0 n=0 N 0−1 ∑ DTFS 0 )k n = e − j (2 π N / N 0) k +⋯+ e = − j (m)(2 N +1) k 1−e ⋅ 1 − e− j ( m)k e ⋅ + j (m) N k − j (m)( 2 N +1) k / 2 e− j (m) k / 2 + j (m)(2 N +1) k / 2 e ⋅ sin((m)(2 N +1)k / 2) sin((m)k / 2) 0 )k X [k ] = 1 sin ((2 π/ N 0 )(2 N +1) k / 2) N0 sin ((2 π / N 0 ) k /2) N0 Dirichlet Function drcl (t , L) = DT Rect (4B) − j (m)(2 N +1) k / 2 −e e+ j (m) k / 2 − e− j (m) k / 2 − j (2 π/ N 0 )( 2 N +1) k 1−e ⋅ − j (2 π/ N 1−e 1 −N m = (2 π / N 0) 0 sin(π L t ) Lsin(π t) +N 11 Young Won Lim 4/20/13 RectN[n] * δN0[n] DTFS (2) Discrete Time Fourier Series 1 X [k] = N X [k ] = = X [k ] = DTFS N−1 N−1 ∑ x [ n] e − j (2 π / N ) k n ∑ x [n] = + j(2 π/ N )k n X [k] e k=0 n=0 1 sin ((2 π/ N 0 )(2 N +1) k / 2) N0 sin ((2 π / N 0 ) k /2) drcl (k / N 0 , (2 N +1)) = 1 sin (π k (2 N +1)/ N 0 ) N0 sin (π k / N 0 ) X [k ] = 1 sin (π k L/ N 0 ) N 0 sin (π k / N 0 ) sin (π k (2 N +1)/ N 0 ) (2 N +1)sin (π k / N 0 ) (2 N +1) ⋅drcl (k / N 0 , (2 N +1)) N0 X [k ] = L ⋅drcl (k / N 0 , L) N0 Dirichlet Function L = 2 N +1 N0 1 drcl (t , L) = jω ̂ −N DT Rect (4B) 0 D L (e ) = +N 12 sin(π Lt ) Lsin (π t) sin( ω ̂ L/2) ̂ Lsin( ω/2) Young Won Lim 4/20/13 RectN[n] * δN0[n] DTFS (3) Discrete Time Fourier Series 1 X [k] = N X [k ] = X [k ] = DTFS N−1 N−1 ∑ x [ n] e − j (2 π / N ) k n x [n] = ∑ + j(2 π/ N )k n X [k] e k=0 n=0 Period : N0 (odd L), 2N0 (even L) 1 sin (π k L/ N 0 ) N 0 sin (π k / N 0 ) L ⋅drcl (k / N 0 , L) N0 (L-1) zero crossings Dirichlet Function L = 2 N +1 N0 1 drcl (t , L) = jω ̂ −N DT Rect (4B) 0 D L (e ) = +N 13 sin(π Lt ) Lsin (π t) sin( ω ̂ L/2) ̂ Lsin( ω/2) Young Won Lim 4/20/13 RectN[n] * δN0[n] DTFS (4) t = −2 t = −1 t =0 t = +1 t = +2 t = −2 t = −1 t =0 odd L=9 t = +1 t = +2 even L=10 9 zero crossings 8 zero crossings k=−32 k=−16 k=0 k=+16 k =+32 k=−32 (L-1) zero crossings k=−16 k=0 k=+16 k=+32 (L-1) zero crossings L Dirichlet Function drcl (t , L) = DT Rect (4B) X [k ] = sin(π L t ) L sin(π t ) 9 ⋅drcl (k /16 , 9) 16 ⋯ −3, −2, −1, 0, +1, +2, +3, ⋯ 14 Young Won Lim 4/20/13 RectN[n] * δN0[n] DTFS (5) Period : N0 (odd L), 2N0 (even L) k=−32 k=−16 k=0 k=+16 k=+32 (L-1) zero crossings DT Rect (4B) X [k ] = 9 ⋅drcl (k /16 15, 9) 16 Young Won Lim 4/20/13 Rect2[n] * δ8[n] DTFS Example Discrete Time Fourier Series 1 X [k] = N DTFS N−1 N−1 ∑ x [ n] e − j (2 π / N ) k n x [n] = ∑ + j(2 π/ N )k n X [k] e k=0 n=0 X [k ] = 1 sin (π k (2 N +1)/ N 0 ) N0 sin (π k / N 0 ) X [k ] = L ⋅drcl (k / N 0 , L) N0 1 sin(π k 5 /8) 8 sin (π k /8) 5 X [k ] = ⋅drcl (k /8 , 5) 8 X [k ] = Period : N0 = 8 (odd L = 5) (L – 1) = 4 zero crossings N 0=8 L = 5 ( N = 2) Dirichlet Function N 0=8 L = 2 N +1 drcl (t , L) = 1 jω ̂ D L (e ) = −N DT Rect (4B) 0 sin(π Lt ) Lsin (π t) sin( ω ̂ L/2) ̂ Lsin( ω/2) +N 16 Young Won Lim 4/20/13 Magnitude Response 0.45 ( ) 7 k drcl ,7 16 16 1 sin(π k 7/16) = 16 7 sin(π k /16) 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -20 -15 DT Rect (4B) -10 -5 0 5 10 17 15 20 Young Won Lim 4/20/13 Phase Response 3.5 ( ) 7 k drcl ,7 16 16 1 sin(π k 7/16) = 16 7 sin(π k /16) 3 2.5 2 1.5 1 0.5 0 -20 -15 DT Rect (4B) -10 -5 0 5 10 18 15 20 Young Won Lim 4/20/13 RectN[n] * δN0[n] DFT Discrete Fourier Transform N−1 X [k ] = ∑ x [n] e − j2 / N k n x [n ] = n=0 X [k ] = sin ((2 π / N 0 )(2 N +1)k / 2) sin ((2 π / N 0 )k / 2) = sin (π k / N 0 (2 N +1)) sin (π k / N 0 ) = sin (π k / N 0 L) sin (π k / N 0 ) 1 N N −1 ∑ j 2 / N k n X [k ] e k =0 drcl (k / N 0 , (2 N +1)) = sin (π k / N 0 (2 N +1)) (2 N +1)sin (π k / N 0 ) X [k ] = (2 N +1)⋅drcl (k / N 0 , (2 N +1)) = L⋅ drcl (k / N 0 , L) Dirichlet Function L = 2 N +1 N0 1 drcl (t , L) = jω ̂ D L (e ) = −N DT Rect (4B) 0 sin(π Lt ) Lsin (π t) sin( ω ̂ L/2) ̂ Lsin( ω/2) +N 19 Young Won Lim 4/20/13 RectN[n] * δN0[n] DTFS & DFT Discrete Time Fourier Series 1 X [k] = N X [k ] = DTFS N−1 N−1 ∑ x [ n] e − j (2 π / N ) k n x [n] = ∑ + j(2 π/ N )k n X [k] e k=0 n=0 1 sin (π k L/ N 0 ) N 0 sin (π k / N 0 ) X [k ] = L ⋅drcl (k / N 0 , L) N0 Discrete Fourier Transform N−1 X [k ] = ∑ x [n] e − j2 / N k n x [n ] = n=0 X [k ] = sin (π k / N 0 L) sin (π k / N 0 ) DT Rect (4B) 1 N N −1 ∑ j 2 / N k n X [k ] e k =0 X [k ] = L ⋅drcl (k / N 0 , L) 20 Young Won Lim 4/20/13 References [1] [2] [3] [4] http://en.wikipedia.org/ J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003 G. Beale, http://teal.gmu.edu/~gbeale/ece_220/fourier_series_02.html C. Langton, http://www.complextoreal.com/chapters/fft1.pdf Young Won Lim 4/20/13
© Copyright 2026 Paperzz