Non-equilibrium thermodynamics (NET): A tool for in fuel cell design Thermal osmosis and thermoelectric potentials in polymer electrolyte fuel cell materials Signe Kjelstrup, NTNU and TU Delft Collaborators: D. Bedeaux, K. Glavatskiy, J. Pharoah, O. Burheim, L. Akyalcin, P. Zefaniya Water phenomena in PEM Fuel Cells Water •Absorbs in the membrane •Diffuses across membranes, electrode layers •is carried along with protons and produced at the cathode •is transported by pressure or temperature gradients HOW CAN WE DESCRIBE TRANSPORT IN HETEROGENEOUS MATERIALS? Outline Non-equilibrium thermodynamics for heterogeneous systems Application to transport phenomena in PEMFC -Electro-osmosis -Thermal osmosis (Soret effect) -Seebeck coefficients and Peltier heats Conclusions A systematic theory of transport • The second law is obeyed locally and globally, Ji X i J j X j 0 n n dSirr / dt dx J s out Js 0 in • Linear laws and Onsager’s symmetry relations for each layer: J1 L11 X 1 L12 X 2 J 2 L21 X 1 L22 X 2 L21 L12 The cell: Transport of heat, water and charge through • 2 microporous layers • 2 catalytic layers • 1 membrane For surface layer no 2 at steady state: s J 'A,i q 1 1 A,o A,i T T wA,o wA,i (T A,o ) Jw A,o T A,o A,i r G / F +j A,o A,o T T A,i A,o Equilibrium surfaces described by Gibbs excess densities • The excess density cAs is equal to the integral over cA minus extrapolated densities. • The value of cAs depends on the choice of the dividing surface. • The position of the equimolar surface d is found by taking cAs=0. • Experimental results do not depend on the choice of the dividing surface. Scientific papers of J.W. Gibbs, Dover, New York, 1961 Surface tension Equilibrium and non-equilibrium values are the same Local equilibrium A. Røsjorde, D.W. Fossmo, D. Bedeaux, S. Kjelstrup and B. Hafskjold, J. of Colloid and Int. Science 232 (2000) 178-185; 240 (2001) 355-364. Heat and mass transfer through surfaces Excess entropy production: s i o s n n 1 1 1 1 s i o i o m m m m Jq s i Jq o s Jm s i Jm o s T m1 T T T T T T m1 T For stationary states the total heat flux is continuous and can be expressed in the measurable heat fluxes on either side of the surface n n J J r and J q J J J H J J H mo J mo i m o m s m i q o q 'i q m 1 i m i m 'o q m 1 Substitution gives: 1 1 J o i T T s 'i q o i o n i m m (T ) Jm To m 1 1 n o mo (T i ) mi 1 J o i Jm T m 1 Ti T 'o q Possible sets of force-flux equations: Heat and mass transport n 1 1 s,i 'i s,i r J r qq q qm J m o i T T m 1 oj ij (T o ) T o n when we use the measurable heat flux on the i side, and r J r Jm s,i jq 'i q m 1 s,i jm n 1 1 s,o 'o s,o r J r qq q qm J m o i T T m 1 oj (T i ) ij Ti n s,o rjqs,o J q'o rjm Jm when we use the measurable heat flux on the o side m 1 Using the relation between the measurable heat fluxes gives: s,o s,o s,i rqqs,o rqqs,i rqqs , rqm rmq rqm H m rqqs r s,o jm r s,o mj r H r H r H j H r s,i jm s,i m jq s,i j qm s m qq where H m H m are the latent heats o H mi The measurable heats of transfer are given for the interface by: qm*s,i s,i 'o s,o J q'i rqm J r q qm s,i , qm*s,o s,o rqq rqq J m T 0, J k 0 J m T 0, J k 0 The energy balance relates the measurable heat fluxes and gives: qm*s,o qm*s,i H mo H mi H s,i r qq qm*s,o s,i s,o H k H rqq rqq The common assumption that qm*s,i and qm*s,o are zero violates thermodynamics! NEMD simulations of a butane–silicalite surface Whole surface Difference in heats of transfer = -55 KJ/mol In agreement with independent MD calculation of ∆adsH I. Inzoli, S. Kjelstrup, D. Bedeaux and J-M. Simon, Microporous Mesoporous Materials (2009) Evaporation of water Kinetic theory k = 0.2 G. Fang and C. Ward Phys. Rev. E 59 (1999) 417-428 D. Bedeaux and S. Kjelstrup, Transfer Coefficients for Evaporation, Physica A, 270 (1999) 413 For a bulk membrane: Dufour effect Peltier heat Fourier’s law dT *m m j m j J q ( J w tw ) dx F F q*m dT m dcw m j Jw Dw tw T dx dx F d m dT m d w tw rm j dx T dx dx Electro' q Thermal osmosis, Soret effect m osmosis Seebeck coefficient Fick’s and Ohm’s laws Electro-osmosis of water in the membrane Constant temperature: j m j J q (Jw t ) F F m dcw m j J w Dw tw 0 dx F d m d w tw rm j dx dx ' q 500 2500 5000 A/m2 Teranishi et al. JES, 2006 *m m w Thermal osmosis water(i)| membrane | water(i) Kim, Mench, JMS, 2009 • Why is water transported from the cold to the hot reservoir? • What will happen if the material of the surface layers changes? Thermal osmosis. Model with vapor at a and c. Constant energy flux through the layers J q J q'a H wa J wa J q'm H wm J wm Influence of interfaces studied through k and , sa m / d m , qw*sa k H w Dwsa Dwm / d m 104 < , < 104 , H w 45 kJ/mol 0 | k | 1 Reucroft, Rivin, Schneider, Polymer, 2002 Data from Fuel Cell Handbook Thermal osmosis. Predicted water flux, driven by 10 K Vapour pressure at both boundaries: 104 Pa The interfaces determine the flux The membrane determines the flux Scaling factor for interface thermal conductivity, Scaling factor for interface diffusivity: 1 θ qw*s A k H H 45 kJ/mol 0 | k | 1 Thermal osmosis model. Predicted water flux driven by 10 K Vapour pressure at boundaries: 104 Pa Water flux as function of k and - scaling factor for thermal conductivity (top) - scaling factor for diffusivity (bottom) Thermal osmosis apparatus water(l)| PTL | membrane| PTL |water(l) Thermal osmosis. Measured water liquid flux driven by ∆T Water flux, / kg.m‐2.s‐1 0,0006 0,0005 0,0004 0,0003 0,0002 0,0001 Nafion 117 layered between: 30C 45C 1) GDL 10BA ‐ 5% Teflonized Carbon Papers 60C 75C T‐30C T‐45C T‐60C T‐75C Flux from hot ‐‐> cold Temperature difference across the three layers / K 0 ‐0,0001 0 2 4 ‐0,0002 ‐0,0003 ‐0,0004 2) GDL 10AA ‐ 0% Teflonized b Flux from cold ‐‐> hot 6 8 10 12 Thermal osmosis across membrane plus porous transport layers: Equation set for one interface. Thermal conductivity T wA,o wA,i (T A,o ) T A,o qw*s,Ai 0 Measurable heat of transfer? 1 sa J 'Ai q qw*s,Ai J w Mass resistivity Majsztrik et al. J Mem.Sci, 2007 T sa q R ww J w 2 T J w RT 2 5 8.31x3002 ( 4 ) 60 kJ/mol i i 8 T c D 10 55.6 / 2 x1x10 *s,Ai w Diffusion, not self-diffusion may explain a reasonable heat of transfer Seebeck coefficient and Peltier heats. Theory From Onsager's relations: EF T j 0 J q' H2 T j T 0 Measure cell with hydrogen electrodes. Calculate oxygen electrode performance from: Relation of properties, formation cell (fc) and concentration cells: EF EF F dT T H2 T O2 dE fc S fc H T 2 O T 2 Seebeck coefficient. Experiment Half cells with thermostatted jackets To potentiometer Gas outlets Thermocouples Pneumatic cylinder 3 Nafion 1110 membranes used Seebeck coefficient. Experimental results Electromotive force and temperature difference across the electrodes Kjelstrup et al. Electrochim. Acta 2013 Seebeck coefficient. Experimental results. Hydrogen, 1 bar electrodes Stationary state for water Nafion membrane ETEK porous layers 0.67 ± 0.05 mV/K 1 0 EF * * S ( S S Pt ) 67 J/K mol H2 H T 2 H 2 electrodes SH* 1 5 J/K mol Seebeck coefficient and Peltier heat • Reaction entropy for formation of water (liquid) ∆S = -86 J/K mol • Entropy removed from left hydrogen electrode: H 1 EF * * S ( S S Pt ) 67 J/K mol H H T 2 2 T H2 electrodes 2 • Entropy removed from left oxygen electrode: O 1 1 EF * * S S ( S S Pt ) w O H T 4 2 2 T O2 electrodes 2 S H T 2 86 67 19 J/K mol • Anode heat source: 350x(-67) J/mol = - 23.5 kJ/mol • Cathode heat source : 350x(-19) J/mol = - 6.6 kJ/mol Peltier heat effect under cell operation Vie and Kjelstrup, Electrochim. Acta., 2005 Calculated profiles of heat flux, potential profile (example) Kjelstrup, Røsjorde, J. Phys.Chem., 2005, Kjelstrup Bedeaux, World Scientific, 2008 Electric current densities: 500, 2500 and 5000 A/m2 Conclusions • Gibbs excess variables and NET offer a systematic way to approach transport phenomena in electrochemical cells • The transported heat and interface is a fraction of the enthalpy of the phase change. This can explain a large thermal osmosis effect. • The Peltier heat of the anode is much larger than that of the cathode. Their difference amounts to the entropy change of the cell reaction times the temperature. Thank you for the attention! Thanks to financial support from the Research Council of Norway through programs: FRIENERGI, RENERGI, NANOMAT, STORFORSK. Non-equilibrium surfaces • Time-dependent position and curvature of the surface • One can still define excess densities • One can also define excess fluxes along moving surfaces D. Bedeaux, A.M. Albano and P. Mazur, Physica A 82 (1976) 438-462 A.M. Albano, D. Bedeaux, J. Vlieger, Physica A 99 (1979) 293; 102 (1980) 105 D. Bedeaux, Adv. Chem. Phys. 64 (1986) 47-109 A.M. Albano and D. Bedeaux, Physica A 147 (1987) 407-435 S. Kjelstrup and D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems; World Scientific, 2008; Series on Advances in Statistical Mechanics, Vol. 16 Basic postulate: local equilibrium • Each excess density is the same function of Ts, μAs , μBs , R1 and R2 as in equilibrium Local equilibrium of a Gibbs surface under non-equilibrium conditions Molecular dynamics simulations A. Røsjorde, D.W. Fossmo, D. Bedeaux, S. Kjelstrup and B. Hafskjold, J. of Colloid and Int. Science 232 (2000) 178-185; 240 (2001) 355-364 J-M. Simon, S. Kjelstrup, D. Bedeaux, and B. Hafskjold, J. Phys. Chem. B 108 (2004) 7186 J. Xu, S. Kjelstrup and D. Bedeaux, Phys. Chem. Chem. Phys. 8 (2006) 2017-2027 J. Ge, S. Kjelstrup, D. Bedeaux, J-M. Simon, B. Rousseaux, Phys. Rev. E 75 (2007) 061604 S. Kjelstrup, D. Bedeaux, I. Inzoli and J-M. Simon, Energy 33 (2008) 1185-1196. The square gradient model E. Johannessen and D. Bedeaux, Physica A 330 (2003) 354-372 The square gradient model for mixtures K.S. Glavatskiy and D. Bedeaux, Phys. Rev. E 77 (2008) 061101, 1-15. K.S. Glavatskiy and D. Bedeaux, Phys. Rev. E 79 (2009) 021608, 1-19.
© Copyright 2025 Paperzz