Projective 3D geometry class 4 Multiple View Geometry Comp 290-089 Marc Pollefeys Content • Background: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation. • Single View: Camera model, Calibration, Single View Geometry. • Two Views: Epipolar Geometry, 3D reconstruction, Computing F, Computing structure, Plane and homographies. • Three Views: Trifocal Tensor, Computing T. • More Views: N-Linearities, Multiple view reconstruction, Bundle adjustment, autocalibration, Dynamic SfM, Cheirality, Duality Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16 (no course) Projective 2D Geometry Jan. 21, 23 Projective 3D Geometry Parameter Estimation Jan. 28, 30 Parameter Estimation Algorithm Evaluation Camera Models Camera Calibration Feb. 11, 13 Single View Geometry Epipolar Geometry Feb. 18, 20 3D reconstruction Fund. Matrix Comp. Feb. 25, 27 Structure Comp. Planes & Homographies Trifocal Tensor Three View Reconstruction Mar. 18, 20 Multiple View Geometry MultipleView Reconstruction Mar. 25, 27 Bundle adjustment Papers Apr. 1, 3 Auto-Calibration Papers Apr. 8, 10 Dynamic SfM Papers Apr. 15, 17 Cheirality Papers Apr. 22, 24 Duality Project Demos Feb. 4, 6 Mar. 4, 6 Last week … line at infinity (affinities) l 0,0,1 T 1 0 0 C* 0 1 0 0 0 0 circular points (similarities) C* IJ T JI T lT C* m 0 (orthogonality) Last week … pole-polar relation cross-ratio l Cx x C* l conjugate points & lines y Cx 0 T m T C* l 0 Chasles’ theorem A projective conic classification x 2 y 2 w2 0 affine conic classification B C X D Fixed points and lines H e λe T H l λl (eigenvectors H =fixed points) (1=2 pointwise fixed line) (eigenvectors H-T =fixed lines) Singular Value Decomposition A mn U mm Σ mn VnTn 1 0 0 0 0 2 Σ 0 0 n 0 0 0 mn 1 2 n 0 UT U I VT V I A U1 1 V1T U 2 2 V2T U n n VnT UΣ Σ VT X Singular Value Decomposition • Homogeneous least-squares min AX subject to X 1 • Span and null-space S L U1 U 2 ; N L U3 U 4 S R V1V2 ; N R V3V4 A UΣ V T solution X Vn 1 0 0 2 Σ 0 0 0 0 0 0 0 0 0 0 0 0 • Closest rank r approximation ~ ~ T A UΣ UΣ V ~ diag 1 , 2 ,, r , 0r 1,, ,, 0n • Pseudo inverse A VΣ U T diag 11 , 21 ,, r1 , 0 ,, 0 Projective 3D Geometry • Points, lines, planes and quadrics • Transformations • П∞, ω∞ and Ω ∞ 3D points 3D point X , Y , Z T in R3 T X X1 , X 2 , X 3 , X 4 in P3 T X1 X 2 X 3 T X , , ,1 X , Y , Z , 1 X4 X4 X4 projective transformation X' H X (4x4-1=15 dof) X 4 0 Planes 3D plane Transformation X' H X π' H -T π π1 X π 2Y π3 Z π 4 0 π1 X 1 π 2 X 2 π3 X 3 π 4 X 4 0 πTX 0 Euclidean representation ~ n . X d 0 n π1 , π 2 , π3 π4 d T ~ T X X ,Y , Z X4 1 d/ n Dual: points ↔ planes, lines ↔ lines Planes from points Solve π from X1T π 0, X T2 π 0 and X 3T π 0 X1T T X 2 π 0 X 3T X1T (solve π as right nullspace of X T2 ) X 3T Or implicitly from coplanarity condition X 1 X 1 1 X 2 1 X 3 1 X X X X 2 1 2 3 2 det X X1X 2 X32 0 2 0 X 3 X 1 3 X 2 3 X 3 3 X 4 X 1 4 X 2 4 X 3 4 X 1D234 X 2 D134 X 3 D124 X 4 D123 0 T π D234 ,D134 , D124 ,D123 Points from planes Solve X from π1T X 0, π T2 X 0 and π 3T X 0 π1T T π 2 X 0 π 3T (solve Xas right nullspace of π1T T ) π 2 π 3T Representing a plane by its span X Mx M X1X 2 X3 πT M 0 p M I π a, b, c, d T b c d p , , a a a T Lines (4dof) A T W T B λA μB T P * W T Q λP μQ W W WW * T *T 022 Example: X-axis 0 0 0 1 W 1 0 0 0 0 0 1 0 W 0 1 0 0 * Points, lines and planes W M T X W* M T π W Mπ 0 X W* MX 0 π Plücker matrices Plücker matrix (4x4 skew-symmetric homogeneous matrix) lij Ai B j Bi A j L ABT BA T 1. L has rank 2 LW *T 0 42 2. 4dof 3. generalization of l x y 4. L independent of choice A and B 5. Transformation L' HLH T Example: x-axis 0 1 0 0 0 0 T L 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 Plücker matrices Dual Plücker matrix L* L* PQT QPT *' L H-T LH -1 Correspondence * * * l12 : l13 : l14 : l23 : l42 : l34 l34 : l42 : l23 : l14* : l13* : l12* Join and incidence π L*X (plane through point and line) L*X 0 (point on line) X Lπ (intersection point of plane and line) Lπ 0 (line in plane) L1, L2 ,π 0 (coplanar lines) Plücker line coordinates l12 , l13 , l14 , l23 , l42 , l34 T P l12l34 l13l42 l14l23 0 5 on Klein quadric T K 0 ˆ A, B, Â,0B̂ 0 0 0 0 1 l12 , 0 0 0 0 1 0 l 13 ˆ ˆ ˆ ˆ ˆ l lˆ det A, B, Â, B̂ l12 l l l l l l l l l 34 13 42 14 23 23 14 42 0 0 0 1 0 0 l14 13 34 12 l12l13l14l23l42l34 ˆ T K | ˆ 0 0 0 1 0 0 0 l23 0 1 0 0 0 0 l42 1 0 0 0 0 0 l34 Plücker line coordinates | 0 (Plücker internal constraint) | ˆ detA, B, Â, B̂ 0 (two lines intersect) | ˆ detP, Q, P̂, Q̂ 0 (two lines intersect) | ˆ P AQ B Q AP B 0 T T T T (two lines intersect) Quadrics and dual quadrics X T QX 0 1. 2. 3. 4. 5. 6. (Q : 4x4 symmetric matrix) Q 9 d.o.f. in general 9 points define quadric det Q=0 ↔ degenerate quadric pole – polar π QX (plane ∩ quadric)=conic C M T QM transformation Q' H -T QH-1 π : X Mx π T Q* π 0 1. relation to quadric Q Q (non-degenerate) * * T 2. transformation Q' HQ H * -1 Quadric classification Rank Sign. Diagonal Equation 4 4 (1,1,1,1) X2+ Y2+ Z2+1=0 2 (1,1,1,-1) X2+ Y2+ Z2=1 Sphere 0 (1,1,-1,-1) X2+ Y2= Z2+1 Hyperboloid (1S) 3 (1,1,1,0) X2+ Y2+ Z2=0 Single point 1 (1,1,-1,0) X 2 + Y 2 = Z2 Cone 2 (1,1,0,0) X2 + Y2 = 0 Single line 0 (1,-1,0,0) X 2 = Y2 Two planes 1 (1,0,0,0) X2=0 Single plane 3 2 1 Realization No real points Quadric classification Projectively equivalent to sphere: sphere ellipsoid hyperboloid paraboloid of two sheets Ruled quadrics: hyperboloids of one sheet Degenerate ruled quadrics: cone two planes Twisted cubic twisted conic cubic a13 22 a14 3 x1 1 a11 a12 12 13 2 3 x2 A a21 a22 a23 a24 x A 2 a a a 2 a 3 33 3 31 32 34 3 a a a 2 a 3 x 41 42 4 43 44 1. 2. 3. 4. 5. 3 intersection with plane (in general) 12 dof (15 for A – 3 for reparametrisation (1 θ θ2θ3) 2 constraints per point on cubic, defined by 6 points projectively equivalent to (1 θ θ2θ3) Horopter & degenerate case for reconstruction Hierarchy of transformations Projective 15dof A vT t v Affine 12dof A t 0 T 1 Similarity 7dof s R t 0T 1 The absolute conic Ω∞ Euclidean 6dof R t 0 T 1 Volume Intersection and tangency Parallellism of planes, Volume ratios, centroids, The plane at infinity π∞ Screw decomposition Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis. 2D Euclidean Motion and the screw decomposition screw axis // rotation axis t t // t The plane at infinity 0 T A 0 0 T π H A π π A t 1 0 1 The plane at infinity π is a fixed plane under a projective transformation H iff H is an affinity 1. 2. 3. 4. canical position π 0,0,0,1 contains directions D X1 , X 2 , X 3 ,0T two planes are parallel line of intersection in π∞ line // line (or plane) point of intersection in π∞ T The absolute conic The absolute conic Ω∞ is a (point) conic on π. In a metric frame: 2 2 2 X1 X 2 X 3 0 X4 or conic for directions: X , X , X I X , X , X T 1 2 3 1 2 3 (with no real points) The absolute conic Ω∞ is a fixed conic under the projective transformation H iff H is a similarity 1. Ω∞ is only fixed as a set 2. Circle intersect Ω∞ in two points 3. Spheres intersect π∞ in Ω∞ The absolute conic d d Euclidean: cos d d d d d d cos Projective: d d d d T 1 2 T 1 1 T 1 T 1 d1T d 2 0 1 T 2 2 2 T 2 2 (orthogonality=conjugacy) normal plane The absolute dual quadric I T 0 * 0 0 The absolute conic Ω*∞ is a fixed conic under the projective transformation H iff H is a similarity 1. 8 dof 2. plane at infinity π∞ is the nullvector of 3. Angles: π T * π cos 1 * 2 π π π π T 1 * 1 T 2 * 2 Next classes: Parameter estimation Direct Linear Transform Iterative Estimation Maximum Likelihood Est. Robust Estimation
© Copyright 2026 Paperzz