Optimal control T. F. Edgar Spring 2012 Optimal Control β’ Static optimization (finite dimensions) β’ Calculus of variations (infinite dimensions) β’ Maximum principle (Pontryagin) / minimum principle Based on state space models Min π π, π S.t. π = π π, π, π‘ π π‘0 is given π‘π π π, π’ = Ξ¦ π π‘π + πΏ π, π, π‘ ππ‘ π‘0 General nonlinear control problem 2 Special Case of π½ β’ Minimum fuel: π‘π 0 β’ Minimum time: π‘π 1ππ‘ 0 β’ Max range : π ππ‘ π₯ π‘π β’ Quadratic loss: π‘π 0 ππ πΈπ + ππ πΉπ ππ‘ Analytical solution if state equation is linear, i.e., π = π¨π + π©π 3 βLinear Quadraticβ problem - LQP π‘π 2 π₯ ππ‘ 0 β’ Note πΌππΈ = is not solvable in a realistic sense (π’ is unbounded), thus need control weighting in π β’ E.g., π = π‘π 0 π₯ 2 + ππ’2 ππ‘ β’ π is a tuning parameter (affects overshoot) 4 β’ π = ππππππ‘ ? Ex. Maximize conversion in exit of tubular reactor max π₯3 π‘π π₯3 : Concentration π‘: Residence time parameter In other cases, when π₯ and π’ are deviation variables, π₯2 + 5 β’ Initial conditions (a) π₯ 0 β 0, π₯ π‘π β π₯π = 0 or π = π‘π 0 π₯ β π₯π 2 ππ‘ Set point change, π₯π is the desired π₯ (b) π₯ 0 β 0, impulse disturbance, π₯π = 0 (c) π₯ 0 = 0, model includes disturbance term π₯π = 0 6 Other considerations: βopen loopβ vs. βclosed loopβ β’ βopen loopβ: optimal control is an explicit function of time, depends on π₯ 0 -- βprogrammed controlβ β’ βclosed loopβ: feedback control, π’ π‘ depends on π₯ π‘ , but not on π₯ 0 . e.g., π’ π‘ = βπΎ π‘ π₯ π‘ Feedback control is advantageous in presence of noise, model errors. Optimal feedback control arises from a specific optimal control problems, the LQP. 7 Derivation of Minimum Principle π‘π min π π, π = Ξ¦ π π‘π + πΏ π π‘ , π π‘ , π‘ ππ‘ 0 π = π π, π, π‘ ππ×1 , ππ×1 Ξ¦, πΏ, π have continuous 1st partial w.r.t. π, π, π‘ Form Lagrangian π‘π π π’ =Ξ¦+ πΏ + ππ π β π ππ‘ π‘0 Multipliers: adjoint variables, costates 8 β’ Define π» = πΏ + ππ π (Hamiltonian) π‘π π π’ =Ξ¦+ π» β ππ π ππ‘ = Ξ¦ π₯ β ππ π π‘0 ( ππ πππ‘ = ππ π π‘π β ππ π π‘π + π‘π π‘π + π» + ππ π ππ‘ π‘0 ππ π ππ‘) β’ Since π is Lagrangian, we treat as unconstrained problem with variables: π π‘ , π π‘ , π π‘ β’ Use variations: πΏπ π‘ , πΏπ π‘ , πΏ π (for πΏπ π‘ => original constraint, the state equation.) πΏπ = 0 = πΞ¦ β ππ ππ₯ + ππ πΏπ₯ π‘π π‘π π‘0 + π»π’ πΏπ’ + π»π₯ πΏπ₯ + ππ πΏπ₯ ππ‘ π‘0 9 β’ Since πΏπ₯ π‘ , πΏπ’ π‘ are arbitrary (β 0), then ππ» ππ₯ + π = 0 ο¨π = ππ» ππ’ = 0, βoptimality equationβ for weak minimum π‘= πΞ¦ π‘π , ππ₯ ππ» β ππ₯ (n equations. βadjoint equationβ) β π = 0 ο¨ π π‘π = πΞ¦ β ππ₯ π‘π (n boundary conditions) If π₯ π‘0 is specified, then πΏπ₯ π‘0 = 0 Two point boundary value problem (βTPBVPβ) 10 β’ Example: ππ₯1 ππ‘ = π’ β π₯1 (1st order transfer function) min π = 1 π‘π 2 0 π₯12 + π’2 ππ‘ LQP 1 2 π» = π₯1 + π’2 + π1 π’ β π₯1 2 π1 = βπ₯1 + π1 , π1 π‘π = 0 π»π’ = π’ + π1 = 0 π’πππ‘ = βπ1 (but donβt know π1 π‘ yet) 11 β’ Free canonical equations (eliminate π’) (1) π₯1 = π’ β π₯1 = βπ1 β π₯1 (π₯1 0 is known) (2) π1 = βπ₯1 + π1 , π1 π‘π = 0 Combine (1) and (2), π1 = 2π1 ο¨ π1 = π1 π 0 = π1 π 2π‘π + π2 π β 2π‘ + π2 π β 2π‘ 2π‘π π₯1 = π1 β π1 = π1 1 β 2 π 2π‘ + π2 1 + 2 π β 2π‘ π₯1 0 = π1 1 β 2 + π2 1 + 2 π’πππ‘ π‘ = = π1 π 2π‘ π₯ 0 2β1 + β π2 π β 2 + 1 π2 2π‘π π 2π‘ β π2 2π‘π β 2π‘ 2π‘ π’ < 0 βπ‘ for π₯ 0 > 0, initially correct to reduce π₯ π‘ 12 β’ Another example: π₯1 = π₯2 π₯2 = π’ (double integrator) 1 π= 2 β 0 π₯12 + π₯22 + π’2 ππ‘ 1 2 1 2 1 2 π» = π₯1 + π₯2 + π’ + π1 π₯2 + π2 π’ 2 2 2 ππ» π1 = β = βπ₯1 ππ₯1 ππ» π2 = β = βπ₯2 β π1 ππ₯2 π»π’ = 0 = π’ + π2 ο¨ π’πππ‘ = βπ2 13 β’ Free canonical equations π₯1 = π₯2 π₯2 = βπ2 π1 = βπ₯1 π2 = βπ₯2 β π1 (π, π coupled) ο¨π2 β π2 + π2 = 0 Char. Equation: π 4 β π 2 + 1 = 0 ο πβ²2 β π β² + 1 = 0 π β² = 0.5 ± 0.707π π = ±0.85 ± 0.4π (4 roots, apply boundary condition) 14 β’ Can motivate feedback control via discrete time, one step ahead π₯π+1 = ππ₯π + ππ’π Set π = 0, π₯1 = ππ₯0 + ππ₯0 (π₯0 fixed) min π = π₯12 + ππ’02 π = ππ₯0 + ππ’0 2 + ππ’02 ππ = 2π ππ₯0 + ππ’0 + 2ππ’0 = 0 ππ’0 π π 0 = ππ₯0 + ππ’0 + π’0 ο¨π’0 = βππ₯0 π π+π Feedback control 15 Continuous Time LQP π = π¨π + π©π 1 π 1 π = π π‘π πΊπ π‘π + 2 2 π‘π ππ πΈπ + ππ πΉπ ππ‘ 0 πΊ, πΈ β₯ πΆ, πΉ β₯ πΆ π»= ππ 1 π 1 π π¨π + π©π + π πΈπ + π πΉπ 2 2 π = βπΈπ β π¨π π, π π‘π = πΊπ π‘π π―π = πΆ = π©π π + πΉπ ππππ‘ = βπΉβ1 π©π π (πΉ > πΆ) π―ππ = πΉ > πΆ 16 β’ Free canonical equations π = π¨π β π©πΉβ1 π©π π (π 0 given) π = βπΈπ β π¨π π (π π‘π given) Let π = π·π (Riccati transformation) ππππ‘ = βπΉβ1 π©π π·π, let π² = πΉβ1 π©π π· (feedback control) Then we have ODE in π· π = π¨π β π©πΉβ1 π©π π·π (1) π = βπΈπ β π¨π π ο¨ π·π + π·π = βπΈπ β π¨π π·π (2) 17 Substitute Eq. (1) into Eq. (2): π· + π·π¨ + π¨π π· β π·π©πΉβ1 π©π π· + πΈ = πΆ (Riccati ODE) π· π‘π = πΊ ( backward time integration) At steady state, π· β π·π for π‘π β β, solve steady state equation. π· is symmetric, π· = π·π 18 β’ Example πΈ= 0 0 , π‘π β β 0 1 β1 0 1 ,π©= , π = 0.1 1 0 0 Plug into Riccati Equation (Steady state) π¨= 2 5π11 + π11 β π12 = 0 π11 = 0.1706 2 π22 = 0.8556 ο¨ 10π12 β1=0 π12 = π21 = 0.3162 1 + 10π11 π12 β π22 = 0 Feedback Matrix: π² = πΉβ1 π©π π· = β1.706 β3.162 19 β’ Generally 3 ways to solve steady state Riccati Equation: (1) integration of odeβs ο steady state; (2) Newton-Raphson (non linear equation solver); (3) transition matrix (analytical solution). 20 β’ Transition matrix approach π π¨ βπ©πΉβ1 π©π =πΈ= π πΈ βπΈ βπ¨ π Reverse time integration (Boundary Condition: at π‘ = π‘π ): Let π = π‘π β π‘ When π‘ = π‘π , π = 0 ππΈ βπ¨ π©πΉβ1 π©π =πΈ= πΈ πΈ π¨π ππ πΈ = ππ π πΈ π = 0 Partition exponential π11 π =πΈ= π π21 π12 πΈ π=0 π22 21 π π = π11 π π‘π + π12 π π‘π = π11 π π‘π + π12 π· π‘π π π‘π (1) π π = π21 π π‘π + π22 π π‘π π· π π π = π21 π π‘π + π22 π· π‘π π π‘π (2) Combine (1) and (2), factor out π π‘π π· π π11 + π12 π· π‘π = π21 + π22 π· π‘π Fix integration βπ‘, πππ Ξπ‘ is fixed π· π‘ β βπ‘ π11 + π12 π· π‘ = π21 + π22 π· π‘ Boundary condition: π· π‘π = πΊ Backward time integration of π, then forward time integration π = π¨π + π©π π = βπΉβ1 π©π π·π 22 Integral Action (eliminate offset) β’ Add terms ππ πΉπ or π1π πΈπ1 to objective function Example: π₯1 = ππ₯1 + ππ’ 1 π= 2 ππ’ 2 2 ππ₯1 + ππ’ + π ππ‘ 2 ππ‘ Augment state equation π₯1 = ππ₯1 + ππ’ (new state variable) ππ’ ππ‘ = π€ (new control variable) Calculate feedback control π€ πππ‘ = βπ1 π₯1 β π2 π’ Integrate: π’ = πβ²1 ππ’ 1 = βπ1 π₯1 β π2 π₯1 β ππ₯1 ππ‘ π π₯1 ππ‘ + πβ²2 π₯1 23 β’ Second method: π₯0 = π₯1 ππ‘; π₯0 = π₯1 1 π= 2 ππ₯12 + ππ’2 + π π₯0 2 ππ‘ π₯0 = π₯1 π₯1 = ππ₯1 + ππ’ Optimal control: π’ = βπ1 π₯1 β π0 π₯0 = βπ1 π₯1 β π0 π₯1 ππ‘ With more state variables, ο¨ PID controller 24
© Copyright 2026 Paperzz