DCT – Wavelet – Filter Bank Trac D.Tran Department of Electrical and Computer Engineering The Johns Hopkins University Baltimore, MD 21218 Outline Reminder Linear signal decomposition Optimal linear transform: KLT, principal component analysis Discrete cosine transform Definition, properties, fast implementation Review of multi-rate signal processing Wavelet and filter banks Aliasing cancellation and perfect reconstruction Spectral factorization: orthogonal, biorthogonal, symmetry Vanishing moments, regularity, smoothness Lattice structure and lifting scheme M-band design – Local cosine/sine bases Reminder: Linear Signal Representation input signal transform coefficient basis function N Representation x ci ψ i i 0 Decomposition Approximation ci x, ψ i xˆ using as few coefficients as possible L N c ψ i 0 i i Motivations Fundamental question: what is the best basis? energy compaction: minimize a pre-defined error measure, say MSE, given L coefficients maximize perceptual reconstruction quality low complexity: fast-computable decomposition and reconstruction intuitive interpretation How to construct such a basis? Different viewpoints! Applications compression, coding signal analysis de-noising, enhancement communications KLT: Optimal Linear Transform R xx Φi i Φi T E xx KLT Φ0 eigenvectors Φ1 Φ N 1 Signal dependent Require stationary signals How do we communicate bases to the decoder? How do we design “good” signal-independent transform? Discrete Cosine Transforms Type I C 2 M I C III Type IV C IV 2 M , m, n 0,1, , M 2 M mn 1 2 K m cos M , m, n 0,1,, M 1 2 M m 1 2 n K n cos M , m, n 0,1, , M 1 m 1 2n 1 2 cos M , m, n 0,1,, M 1 Type III C mn K m K n cos M Type II II 1 2 , i 0, M Ki otherwise 1, DCT Type-II 1 , Ki 2 1, • • • • • 8 x 8 block i 0 DC i0 orthogonal real coefficients symmetry near-optimal fast algorithms horizontal edges DCT basis M 1 2 (2n 1)m x[n] cos X [ m] K m M 2M n 0 M 1 (2m 1)n x[n] 2 X [ m ] cos K n M 2M m 0 m, n 0,1,..., M 1 vertical edges DCT Symmetry m2M 1 n 1 cos 2M 2 M 2 2n 1m cos 2M 2 Mm 2n 1m cos 2M 2M 2n 1m cos 2M DCT basis functions are either symmetric or anti-symmetric DCT: Recursive Property An M-point DCT–II can be implemented via an M/2-point DCT–II and an M/2-point DCT–IV C II M II 1 CM/2 2 0 0 I J IV CM/2 J J I Butterfly CIIM/2 DCT coefficients input samples C IV M/2 J Fast DCT Implementation 13 multiplications and 29 additions per 8 input samples Block DCT X1 CIIM X 2 0 X N output blocks of DCT coefficients, each of size M 0 C II M 0 0 C II M 0 x1 x2 0 II C M x N input blocks, each of size M Filtering x[n] h[n] y[n] h[n k ]x[k ] h[k ]x[n k ] y[n] k k y[n 1] h[2] h[1] h[0] 0 0 y[n] 0 h[2] h[1] h[0] 0 y [ n 1 ] 0 h[2] h[1] h[0] 0 x [ n 2 ] x[n 1] x [ n ] x[n 1] X e j n Fourier : H (e j ) h[n]e jn n LTI Operator z Transform : H ( z ) h[n]z n H e j Y e j X e j H e j Down-Sampling x[n ] 2 y[n] x[2n] x [ 1 ] y[1] 1 0 0 0 0 x[0] y[0] 0 0 1 0 0 x[1] y[1] 0 0 0 0 1 x[2] Linear Time-Variant Lossy Operator Y e j X e j 2 1 Y e X e j / 2 X e j 2 / 2 2 1 Y z X z1/ 2 X z1/ 2 2 j 2 Up-Sampling x[n ] 2 x[n / 2], n even y[n] n odd 0, 1 0 0 y[1] x[1] 0 0 0 y[0] x[0] 0 1 0 x[1] y[1] 0 0 0 y[2] x[2] 0 0 1 Y e j Y z X z 2 X e j Y e j X e j 2 2 2 Filter Bank First FB designed for speech coding, [Croisier-Esteban-Galand 1976] Orthogonal FIR filter bank, [Smith-Barnwell 1984], [Mintzer 1985] low-pass filter 2 2 F0 ( z ) 2 F1 ( z) Q H1 ( z ) 2 high-pass filter high-pass filter Analysis Bank Synthesis Bank X ( e j ) 2 2 X (z ) H 0 ( z) low-pass filter Xˆ ( z ) FB Analysis X (z ) H 0 ( z) 2 2 F0 ( z ) 2 F1 ( z) Q H1 ( z ) 2 Xˆ ( z ) for Distortion Eliminatio n, set to 2 z l 1 ˆ X ( z ) F0 ( z ) H 0 ( z ) F1 ( z ) H1 ( z )X ( z ) 2 1 F0 ( z ) H 0 ( z ) F1 ( z ) H1 ( z )X ( z ) 2 for Aliasing Cancellati on, set to 0! z l X ( z ) F0 ( z ) H1 ( z ) F1 ( z ) H 0 ( z ) Alternating-Sign Construction Perfect Reconstruction With Aliasing Cancellation F0 ( z ) H1 ( z ) F1 ( z ) H 0 ( z ) Distortion Elimination becomes F0 ( z ) H 0 ( z ) F0 ( z ) H 0 ( z ) 2 z l P0 ( z ) P0 ( z ) 2 z l where P0 ( z ) F0 ( z ) H 0 ( z ) Half-band Filter Half-band Filter P0 ( z ) a bz 1 cz 2 dz 3 ez 4 lone odd-power P0 ( z ) a bz 1 cz 2 dz 3 ez 4 P0 ( z ) P0 ( z ) 0 2bz 1 0 2dz 3 0 2 z l can only have one odd-power Standard design procedure Design a good low-pass half-band filter P0 ( z ) Factor P0 ( z ) into H 0 ( z ) and F0 ( z ) Use the aliasing cancellation condition to obtain H1 ( z ) and F1 ( z) Spectral Factorization multiple zeros Im z * z and z* must stay together z z* Orthogonality f i [n] hi [n] 1 Fi ( z ) H i ( z ) z and z^-1 must be separated Re z 1 Symmetry hi [n] hi [ L 1 n] ( L 1) H i ( z) z H i ( z 1 ) z and z^-1 must stay together Zeros of Half-band Filter P0 ( z ) (1 zn z 1 ); Real-coefficient zn roots n H 0 ( z ) (1 zk z 1 ) kH F0 ( z ) (1 zl z 1 ) lF Spectral Factorization: Orthogonal Im z Im z * 8 zeros Minimum Phase 4 zeros z* Re z z * Re Im z 1 4 zeros Maximum Phase z * Re z 1 Spectral Factorization: Symmetry z * Im z Im 8 zeros z * 9-tap H0 z 4 zeros * Re z z * z 1 Re Im z 1 4 zeros 7-tap F0 Re History: Wavelets Early wavelets: for geophysics, seismic, oil-prospecting applications, [Morlet-Grossman-Meyer 1980-1984] Compact-support wavelets with smoothness and regularity, [Daubechies 1988] Linkage to filter banks and multi-resolution representation, fast discrete wavelet transform (DWT), [Mallat 1989] Even faster and more efficient implementations: lattice structure for filter banks, [Vaidyanathan-Hoang 1988]; lifting scheme, [Sweldens 1995] Prof. Y. Meyer Prof. I. Daubechies Prof. S. Mallat From Filter Bank to Wavelet [Daubechies 1988], [Mallat 1989] Constructed as iterated filter bank Discrete Wavelet Transform (DWT): iterate FB on the lowpass subband x[n ] frequency spectrum 0 /4 /2 x(t ) i c ( 2 i ,k t k ) k i 0 1-Level 2D DWT input image x[m, n] LP HP LP LL: smooth approximation HP LH: horizontal edges LP HL: vertical edges HP HH: diagonal edges decompose rows decompose columns L LL LH HL HH H 2-Level 2D DWT LP LP HP LP LP HP LP HP HP HP LP decompose rows decompose columns HP decompose rows decompose columns LH HL HH 2D DWT Time-Frequency Localization x[n] cos( an) [n] t best time localization t STFT uniform tiling t wavelet dyadic tiling t best frequency localization Heisenberg’s Uncertainty Principle: bound on T-F product Wavelets provide flexibility and good time-frequency trade-off Wavelet Packet Iterate adaptively according to the signal Arbitrary tiling of the time-frequency plain x[n ] frequency spectrum 0 /2 Question: can we iterate any FB to construct wavelets and wavelet packets? Scaling and Wavelet Function H 0 (z 4 ) 8 H1 ( z 4 ) 8 H 0 (z 2 ) x[n ] H 0 ( z) H1 ( z 2 ) 4 2 H1 ( z) L Discrete Basis H ( z) H 0 ( z L 0 k 1 i 1 2 k 1 ) product filters 2 k 1 2i 1 H ( z ) H 0 ( z ) H 1 ( z ) k 1 i 1 Continuous-time Basis scaling function 1 ( ) H (t) 2 h0 [n] (2t n) 0 k 2 2 n k 1 1 ( ) 1 H H (t) 2 h1 [n] (2t n) 1 0 k 2 2 k 2 2 2 n wavelet function Convergence & Smoothness Not all FB yields nice product filters Two fundamental questions Will the infinite product converge? Will the infinite product converge to a smooth function? Necessary condition for convergence: at least a zero at Sufficient condition for smoothness: many zeros at with 2 zeros at with 4 zeros at Regularity & Vanishing Moments In an orthogonal filter bank, the scaling filter has K vanishing moments (or is K-regular) if and only if Scaling filter has K zeros at k k 0,1,..., K 1 n h1 [n] 0, n All polynomial sequences up to degree (K-1) can be expressed as a linear combination of integer-shifted scaling filters [Daubechies] Design Procedure: max-flat half-band spectral factorization P0 ( z ) 1 z 1 2 K enforce the half-band condition here Q( z ) maximize the number of vanishing moments Polyphase Representation x[n] 2 2 z E (z) Q z 1 R (z) 2 2 Analysis Bank Synthesis Bank R( z ), E ( z ) : 2 x 2 polynomial matrices l Perfect Reconstruction: R( z ) E ( z ) z I FIR filters: E ( z ) , R( z ) = monomial h0 [ n] [ a b c d ] h1[ n] [ d -c b -a ] E(z) = a+cz d-bz b+dz -c-az ^ x[n] Lattice Structure cos i Ri sin i Orthogonal Lattice x[n] 2 2 1 0 z z z 1 i Ri 1 i Linear-Phase Lattice x[n] 2 z 2 z z sin i cos i … FB Design from Lattice Structure Set of free parameters i or i Modular construction, well-conditioned, nice built-in properties Complete characterization: lattice covers all possible solutions Unconstrained optimization stopband attenuation min f i regularity i combination Lifting Scheme x[n] 2 P0 ( z ) z U 0 ( z) 2 … K … 1/ K E (z ) 0 0 1 U i ( z ) 1 K E( z) 1 Pi ( z ) 1 0 1 / K i 0 Example: 1 0 1 1 ( 1 z ) 1 E( z) 4 1 ( 1 z ) 1 0 1 2 1 1 3 1 1 h0 [n] , , , , 8 4 4 4 8 1 1 h1[n] , 1, 2 2 Wavelets: Summary Closed-form construction Fundamental properties - Advantages Ψ( 2t) Time Scaled : Mother Wav elet : Ψ(t) Translatio n : Ψ(t-k) Time Scaled Translatio n : Ψ( 2t-k) non-redundant orthonormal bases, perfect reconstruction compact support is possible basis functions with varying lengths with zoom capability smooth approximation fast O(n) algorithms Connection to other constructions filter bank and sub-band coding in signal compression multi-resolution in computer vision multi-grid methods in numerical analysis successive refinement in graphics
© Copyright 2026 Paperzz