Sampling algorithms and Markov chains László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 [email protected] Sampling: a general algorithmic task Applications: - statistics - simulation - counting - numerical integration - optimization -… L: a language in NP, with presentation L {x : (y) A( x, y)} certificate polynomial time algorithm Given: x Find: - a certificate - an optimal certificate - the number of certificates - a random certificate (uniform, or given distribution) One general method for sampling: Markov chains (+rejection sampling, lifting,…) Want: sample from distribution p on set V Construct ergodic Markov chain with states: V stationary distribution: p Simulate (run) the chain for T steps Output the final state ???????????? mixing time 5 4 5 4 2 3 3 2 1 1 Given: poset State: compatible linear order Transition: - pick randomly label i<n; - interchange i and i+1 if possible Mixing time t : distribution after t steps Roughly: min{t : d ( t , p ) 1/10} Bipartite graph?! 1 t t ( 0 ... t 1 ) T max 0 min{t : d (t , p ) 1/10} 0 (enough to consider s ) Conductance S V \S frequency of stepping from S to K\S in Markov chain: Q( S , V \ S ) in sequence of independent samples: p ( S )p (V \ S ) Q( S , V \ S ) , conductance: ( S ) p ( S )p (V \ S ) min S ( S ) ( x) min{( S ) : p ( S ) x} 1 1 T log(1/ p 0 ) 2 Jerrum - Sinclair In typical sampling application: log(1/ p 0 ) polynomial polynomiality of T 1 polynomiality of But in finer analysis? Key lemma: y1 y2 ... yk ... yl ... yn Q ( l , k ) 1 yl yk Q ( l , k ) Proof for l=k+1 E(# steps from {l ,...n}) y j Q( j, l ) yl Q( l , l ) j l E(# steps to {l ,...n}) y j Q( j, l ) yl 1Q( l , l ) j l 1 ( yl yl 1 )Q( l , l ) Simple isoperimetric inequality: 2 voln 1 ( F ) vol( S ) D L – Simonovits Dyer – Frieze Improved isoperimetric inequality: 1 vol( K ) voln 1 ( F ) vol( S ) ln D vol( S ) Kannan-L 1 ( x) min ln ,1 D n x(1 x) D2 T n 2 After appropriate preprocessing, T n3 Lifting Markov chains T n T n2 Diaconis – Holmes – Neal
© Copyright 2026 Paperzz