Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state Ferenc Iglói (Budapest) in collaboration with László Környei (Szeged, Budapest) Michel Pleimling (Virginia Tech) Leipzig, 27th November 2008 1 AGENDA • Nonequilibrium relaxation – Turban model – ordered (Ti = 0) initial state – disordered (Ti = ∞) initial state – analogy with static infinite criticality • Models semi- • Results – Relaxation from a critical initial state – Relaxation from a 1st -order initial state – Ising model – Baxter-Wu (BW) model • Conclusions 2 Nonequilibrium relaxation • prepare the system in an initial state for t < 0 • quench to the critical point (Tc ) at t = 0 • let evolve with the dynamical rules at Tc for t > 0 • measure – relaxation of the magnetization: m(t) = hσ (t)i – autocorrelation function: G(t, s) = hσ (s)σ (t)i s: waiting time t: observation time in equilibrium: G(t, s) ∼ (t − s)−2x/z 3 time dependence for t > 0 • ordered initial state (Ti = 0) relaxation involves only equilibrium critical exponents position dependence for y > 0 • magnetization profile in a semiinfinite system y ≥ 0 with fixed boundary condition m(y) ∼ y−x , m(t) ∼ t −x/z , Ti = 0 hs = ∞ . x = β /ν: anomalous dimension of the magnetization . z: dynamical exponent . . correlation function: . autocorrelation function: −2x/z G(t, s) ∼ (t − s) g(t/s), Ti = 0 C(y1 , y2 ) ∼ (y1 − y2 )−2x g(y1 /y2 ), hs = ∞ 4 time dependence for t > 0 • disordered initial state (Ti = ∞) m(t) ∼ mit θ , t < ti position dependence for y > 0 • magnetization profile in a semiinfinite system with small surface field: hs 1 m(y) ∼ yxs −x , θ : initial slip exponent mi → 0: initial magnetization −z/xi ti ∼ mi −1/xs xi = θ z + x: anomalous dimension of mi G(t, s) ∼ t −λ /z , t s, λ = d − θ z = d − xi + x hs → 0 : surface field ys ∼ hs : initial time Ti = ∞ y < ys : surface region xs : anomalous dimension of ms . ⊥ C(y1 , y2 ) ∼ y−η 1 , y1 y2 η⊥ = xs + x 5 Power-law correlations in the initial state previous studies • 2d XY model: Ti < Tc < TKT (Berthier, Holdsworth, Sellitto) (Abriet, Karevski) x(Tc ) → x(Tc ) − x(Ti ) • spherical model (Picone, Henkel) Our aim is to study nonequilibrium dynamics after a sudden change of the form of the interaction Experimental realization: atoms in optical lattices. 6 Models • 2d Ising model → dynamics at Tc HI = − ∑i, j J (σi, j σi, j+1 + σi, j σi+1, j ) critical point: sinh(2J/kTc ) = 1 • Baxter-Wu model HBW = − ∑ JBW (σi, j σi−1, j σi, j−1 i, j +σi, j σi+1, j σi, j+1 ) critical point: • Turban model Hn = − ∑i, j J2 σi, j σi, j+1 + Jn ∏n−1 k=0 σi+k, j critical point: sinh(2J2 /kTc ) sinh(2Jn /kTc ) = 1 4-state Potts universality – n = 3, 2nd -order 4-state Potts universality . – n = 4, 1st -order sinh(2JBW /kTc ) = 1 7 Relaxation from second-order transition points [L. Környei, M. Pleimling, F. I.,Phys. Rev. E77, 011127 (2008)] BW model n = 3 Turban model 8 Relaxation from a BW critical state -1.0 0.5 0.4 -2.0 ln(-m) m(t) 0.3 0.2 0.1 0.0 L=60 L=120 L=240 -4.0 -0.1 -0.2 -3.0 (a) 0 2 (b) 4 ln t 6 8 -5.0 0 2 4 6 8 10 ln t mi = 0.33, 0.16, 0.08, 0.04, 0. mi = 0. (from top to bottom) θ = 0.18(1) 9 ln(G)+t/τL ln(G) L=60 L=120 L=240 -1.0 -2.0 -3.0 -1.5 -2.0 -4.0 -2.5 (a) 0 1000 2000 3000 4000 t (b) 0 2 4 6 8 ln t G(t) = At −λ /z exp(−t/τL ) G̃(t) = G(t) exp(t/τL ) λ /z = 0.18(1) 10 Relaxation from an n = 3 critical state -1.0 -0.5 ln(G)+t/τL ln(-m) -1.5 -2.0 -2.5 -3.0 L=60 L=120 L=240 -3.5 -1.0 -1.5 -2.0 (a) -4.0 0 2 (b) 4 6 ln t 8 10 -2.5 0 2 4 6 8 ln t magnetization G̃(t) = G(t) exp(t/τL ) θ = 0.18(1) λ /z = 0.165(10) 11 Relaxation from a first-order transition point n = 4 Turban model T < Tc → 8-fold degenerate state • latent heat: ∆/kTc = 0.146(3) • jump in the magnetization: mc = 0.769(6) Reminder: nonequilibrium relaxation from Ti = ∞ [M. Pleimling, F. I.,Europhys. Lett. 79, 56002 (2007)] Autocorrelation . . 0.87 (a) (b) stretched exponential approach of mc 0.1 C(t) C(t)-mc 0.83 0.79 C(t) − mc ∼ exp(−bt a ) a = 0.198(3) L=640 data fit L=60 0.75 2 10 4 10 t 6 10 0.01 10 100 t 12 1000 Relaxation from mi > 0 . . 1.0 1.0 (b) 0.8 0.8 0.6 0.6 m(t) m(t) (a) 0.4 0.2 0.0 mi > m∗ = 0.5 0.4 mi < m∗ = 0.5 0.2 0 0.0 1000 2000 3000 4000 5000 0 -5 t m(t) ∼ t −d/z m(t) → mc /2 ln t mi=0.10 mi=0.08 mi=0.06 mi=0.04 0.4 -4.5 -5.0 ln m(t) 0.6 m(t)/mi m(t) → 0 mi < m∗ = 0.5 5 m(t) → mc -4.0 0.8 -5.5 -6.0 -6.5 0.2 (c) 0.0 . 0 1 -7.0 2 3 4 ln t 5 6 7 -7.5 7.5 (d) 8 8.5 ln t discontinuous equilibrium transition Wetting in time continuous nonequilibrium transition 13 Autocorrelation of the 2d Ising model starting with n = 4 initial state 0.0 L=120 L=180 L=240 ln(G)+t/τL ln(G) -4.0 -6.0 -8.0 0 -4.0 -6.0 (a) -10.0 -2.0 10000 t 20000 (b) 0 2 4 6 8 10 ln t G(t) = At −λ /z exp(−t/τL ) λ /z = 0.475(10) → λ = d/2 14 Conclusions Ising BW n=3 n=4 BW n=3 n=4 (a) x 1/8 1/8 1/8 0.(a) z 2.17 2.29(1) 2.3(1) 2.05(10) : discontinuity fixed-point value λ /z 0.74(2) 1.13(6) 0.98(2) ∞(b) 0.17(1) 0.165(10) 0.475(10) (b) θ 0.187 −0.186(2) −0.03(1) −1.00(5) 0.18(1) 0.18(1) : stretched exponential decay • a critical initial state has an influence on the nonequilibrium exponents • initial states in the same universality class have the same effect • analogy with static critical behavior at an interface separating two critical systems • if the initial state corresponds to a 1st order transition then λ = d/2 15 Acknowledgment László Környei (Szeged, Budapest) Michel Pleimling (Virginia Tech) 16 • 2d random-field Ising model HRF = HI − ∑i (H + hi, j )σi, j – homogeneous domains of size: lb ∼ exp(A/∆2 ): length hi, j random field with Gaussian distribution: h 2i h 1 P(hi, j ) = √2πh2 exp − 2hi, 2j breaking-up H for H = 0: P↑ • no magnetic long-range order • geometrical clusters (with parallel spins) (1) F↑ (3) DC (2) F↓ D P↓ – percolating for ∆ = J/h < ∆c ≈ 1.65 17 Relaxation from the RFIM initial state mi = 0.25, ∆ = 1.7, lattice : 200 × 200 • 1) cluster dissolution → lntmin ∼ ln lb ∼ 1/∆2 −z/xi • 2) domain growth → ti ∼ mi • 3) equilibrium relaxation 18 3 ln tmin (a) 0.045 −1 2 1 ln G(t,0) m(t) (b) 0 0.2 0.3 0.4 0.5 0.6 2 1/∆ 0.20 −3 −1.5 −5 m(t) 0.040 0.10 −7 0.05 0.035 0 10 20 t 30 0.03 2 10 −4.5 (c) 2 5*10 3 2*10 t a) ∆ = 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.2, 2.6, 3.0 bottom to top) −9 ∆=1.4 ln G(t,0) 0.050 0 ln t 6 2 9 4 6 8 ln t (from ∆ = 1.4, 1.6, 1.8, 2.0, 4.0 (from top to bottom), green: Ti = ∞ c) ∆ = 1.4, 1.6, 1.8, 2.0, 2.2, 2.6, 3.0 (from bottom to top), dashed: Ti = ∞ inset: L = 128, 200, 500 (from bottom to top) same nonequilibrium exponents as for Ti = ∞ 19
© Copyright 2025 Paperzz