II. Towards a Theory of Nonlinear Dynamics & Chaos 3. Dynamics in State Space: 1- & 2- D 4. 3-D State Space & Chaos 5. Iterated Maps 6. Quasi-Periodicity & Chaos 7. Intermittency & Crises 8. Hamiltonian Systems 3. Dynamics in State Space: 1- & 2- D Concepts to be introduced: State space / Phase Space H. Poincare J.W. Gibbs Fixed points ( equilibium / stationary / critical / singular ) points Limit Cycles Stability (attractor) / Instability (repellor) Bifurcations : Change of stability / Birth of f.p. or l.c. State Space Degrees of freedom : 1. Classical mechanics (phase space) : number of (q,p) pairs. 2. Dynamical systems (state space) : number of independent variables. Spring obeying Hooke’s law : x t x 0 cos t x 0 m x k x sin t Cycle: Closed periodic trajectory k m Systems of 1st Order ODEs u t f u ui t fi u i 1, u t f u, t ui t fi u, t Autonomous ,n DoF = n NonAutonomous Dimension of state space = number of 1st order autonomous ODEs. N-DoF non-autonomous → (N+1)-DoF autonomous i 1, , n 1 ui t fi u un 1 t t un 1 t f n 1 u 1 Autonomous Non-crossing theorem is applicable only to autonomous systems One nth order ODE ~ n 1st order ODEs Mass spring: x t 2 x t x t y t y t 2 x t u f u u1, u2 x, y f f1 , f 2 y , 2 x u2 , 2u1 2nd order ODE Two 1st order ODEs u1 t u2 t u2 t 2u1 t Given u f u u* is a fixed point if f u * 0 Caution: Autonomous version of a non-autonomous system requires special treatment [ un+1 = 1 0 ]. All dynamical systems can be converted to a set of 1st order ODEs. For some systems this requires DoF = ∞, e.g., • PDEs • integral – differential eqs • memory eqs If the system is dissipative, only a few DoFs will remain active eventually. No-Intersection Theorem • A state space trajectory cannot cross itelf. • 2 distinct state space trajectories cannot intersect in a finite amount of time. Physical implication : Determinism Mathematical origin : Uniqueness solutions of ODE that satisfy the Lipschitz condition (f bounded). Apparent violations: • Asymptotic intersects. • Projections Dissipative Systems & Attractors • Transients not important in dissipative systems ( long time final states independent of IC ) • Attractor: Region of state space to which some trajectories converge. • Basin of an attractor: Region of state space through which all trajectories converge to that attractor. • Separatrix: Boundary between the basins of two different attractors. •Miscellaneous: –Fractal basin boundaries. –Riddled basins of attraction. –Dimension of the state space. 1-D State Space Evolution eq. : Fixed point: X f X X 0 f X Types of fixed points in 1-D state spaces: • Nodes / sinks / stable fixed points • Repellors / sources / unstable fixed points • Saddle points Type Determination X Let X0 be a fixed point: df dX For λ > 0 X X0 X X0 = characteristic value ( eigenvalue ) of X0 X 0 for X X0 X t X 0 X t X t X 0 X t X 0 X t X t X 0 For λ < 0 0 f X0 X 0 for X X0 X t X 0 X 0 X t X t X t X 0 X 0 X t X t λ = 0 d2 f dX2 d2 f dX2 0 for X X 0 X X0 0 for X X 0 0 for X X 0 X X0 0 for X X 0 λ = 0 d2 f dX2 0 X X0 X 0 for X X 0 X t X 0 X t X t X t X 0 X t X t X 0 X0 Repells Attracts Convex Saddle points λ = 0 d2 f dX2 0 X 0 for X X X0 X 0 X t X 0 X t X t X t X 0 X t X t X 0 X0 Attracts Repells Concave Structural Instability Saddle point is structurally unstable Taylor series Expansion X0 = fixed point df f X f X0 X X0 dX X X X0 X X0 2 1 2 d f X X0 2 dX2 df dX X X0 0 X X0 Lyapunov exponent X t X 0 X 0 X 0 e t x t x 0 e t > 0 X0 repellor < 0 X0 node x t X t X 0 = 0 X0 s.p. / node / rep. Trajectories in 1-D State Space local behavior Global behavior determined by matching fixed point basins. → joining arrows pointing toward (away) from nodes (repellors). f continuous neighboring fixed points cannot be • both nodes or both repellors • saddle points of different types Exercises 3.8- 3,4 Bounded systems: Outermost fixed points must be • nodes or • type I saddle point on the left • type II saddle point on the right. A node must be on the repelling side of a saddle point. When Is A System Dissipative ? Defining characteristics of a dissipative system : Motion reduced asymptotically to a few active DoFs. Cluster of ICs ( those that lead to fixed points excluded ). C.f., statistical ensembles. dL d X B X A X B X A f XB f X A dt dt dL Ld t df dX df dX XB X A X X A System is dissipative near XA if df/dX < 0. X X A e.g., near a node. Divergence theorem 2-D State Space X 1 f1 X 1 , X 2 0 f1 X 10 , X 20 X 2 f2 X 1, X 2 0 f 2 X 10 , X 20 X1 X2 f1 f X 1 X 10 1 X1 0 X2 f2 f2 X X 1 10 X1 0 X2 X 2 X 20 0 X 2 X 20 0 x1 f1,1 x1 f1, 2 x2 x j X j X j0 x2 f 2 ,1 x1 f 2 , 2 x2 fi , j x fx fi xj 0 Fixed point Special case λ1 < 0 λ 2 < 0 f1,1 1 f1, 2 0 f 2 ,1 0 f2 , 2 2 λ1 > 0 λ2 < 0 x1 1 x1 x2 2 x2 λ1 > 0 λ2 > 0 λ1 < 0 λ2 > 0 g x, y cos x sin y Saddle point at (x,y) = (-π/2 , 0 ) 1 0 -1 1 0.5 0 -0.5 -1 -3 -2 -1 0 Hyperbolic point: λ 0 • Invariant manifold: all trajectories along the principal axes of a hyperbolic saddle point. • Stable (invariant) manifold (in-set): Trajectories heading towards the hyperbolic saddle point. • Unstable (invariant) manifold (out-set): Trajectories heading away from the hyperbolic saddle point. In-sets & outsets serves as separatrices. 1-D saddle point are non-hyperbolic since λ = 0 Brusselator X A B 1 X X 2Y Y BX X Y 2 → X Y A X Fixed points: A X 0 BX X 2Y 0 B X 0 , Y0 A, A A,B > 0 General 2-D Case x1 f11 x1 f12 x2 x1 f11 x1 f12 x2 x2 f 21 x1 f 22 x2 f11x1 f12 f 21x1 f 22 x2 x f x f11 x1 f12 f 21 x1 f 22 1 11 1 f12 f11 f 22 x1 f12 f 21 f11 f 22 x1 x1 Ce t → 2 f11 f 22 f11 f 22 f12 f 21 0 1 f11 f 22 f11 f 22 1 f11 f 22 2 f11 f 22 2 x1 C e t Ce t State variables can be any pair from 2 2 4 f11 f 22 f12 f 21 4 f12 f 21 x2 B e t Be t x1, x1, x2 , x2 Ex 3.11 Complex Characteristic Values 1 f11 f 22 2 f11 f 22 4 f12 f 21 2 1 R f11 f 22 Re 2 R i Im f11 f 22 4 f12 f 21 Note: 2 x1 e Rt C ei t C e i t x2 e B e Rt i t B e i t f11 f 22 2 4 f12 f 21 f11 f 22 4 f12 f 21 2 is either real or purely imaginary Spirals, inward if R < 0 (focus) outward if R > 0 Limit cycle if R = 0 A C C 2 A B B 2i R < 0 x1 Ae Rt cos t x2 Ae Rt sin t R > 0 Dissipation & Divergence Theorem 2-D state space Area : A X1C X1B X 2C X 2 B dA f1 X 1C , X 2 B f1 X 1B , X 2 B X 2C X 2 B X 1C X 1B f 2 X 1B , X 2 C f 2 X 1B , X 2 B dt f1 X 1C , X 2 B f 2 X 1B , X 2 C f1 X 1B , X 2 B X 1C X 1B f1 X1 X f 2 X 1B , X 2 B X 2 C X 2 B f2 X2 1B , X 2 B X1 B , X 2 B dA f11 X , X X 1C X 1B X 2C X 2 B X 1C X 1B X 2C X 2 B f 22 X , X 1B 2B 1B 2B dt 1 dA f11 f 22 f A dt f < 0 dissipative N 1 dV f j j f V dt j 1 j 0 t Jacobian Matrix at Fixed Point N X i X i 0 xi X i fi → xi fi j x j j 1 N xi Ce t → x j fi j x j f11 f i J fi j x j f N1 f11 f1N 0 f N1 f NN Jx x → j 1 f1N f NN Jacobian matrix N N i 1 i 1 Tr f f ii i N det f i i 1 2-D State Space 1 f11 f 22 2 1 Tr J 2 f11 f 22 4 f11 f 22 f12 f 21 2 Tr J 4 det J 2 1 Tr J 2 Tr J < 0 Tr J > 0 Δ<0 Both λ complex, Real part negative Spiral node Both λ complex, Real part positive Spiral repellor Δ>0 det J > 0 Both λ real & negative node Both λ real & positive repellor Δ > 0 det J det J < 0 Both λ real & of of opposite signs, Saddle point Both λ real & of of opposite signs, Saddle point Example: The Brusselator X A B 1 X X 2Y B X , Y A , 0 0 A Y BX X 2Y TrJ B 1 A2 B 1 A J 2 B A 2 B 1 A2 2 1 det J A2 2 2 B 1 A 4 A2 Set A = 1 & let B be control parameter : 1 B 2 2 • B < 2, spiral node • 2 < B < 4, spiral repellor (converge to another limit cycle) • B > 4, do exercise 3.14-2. B 2 4 2 Limit Cycles Limit cycle: closed loop in state space to (from) which nearby trajectories are attracted (repelled). vortex Invariant set: region in state space where a trajectory starting in it will remain there forever. Poincare-Bendixson theorem: Let R be a finite invariant set in a 2-D state space, then any trajectory in it must, as t → ∞, approach a 1. fixed point , or 2. limit cycle. Implications: • no chaos in 2-D systems. • limit cycle in Brusselator. Delayed DE: u f t g t T DoF = : IC for t[-T,0] needed Topology: Poincare index theorem Poincare Sections Poincare section in n-D state space: An (n-1)-D hyper-surface that cuts through the trajectory of a n-D continuous flow and reduces it to a (n-1)-D discrete map. Example: Limit cycle in 2-D state space Poincare Map Pn1 F Pn Exercise 3.16-1 P* F P * Fixed point of F : Near P*: Let d n Pn P * M dF dP P2 P* F P1 F P * d2 → dF dP dF dP P1 P * P* d1 Md1 P* = (characteristic / Floquet / Lyapunov) multiplier P* d n Md n1 → d n M n 1d1 Characteristic exponent ln M M<1 Attracting M>1 Repelling M=1 Saddle (rare in 2-D ) Bifurcation Theory Appendix B Study of changes in the character of fixed points. ( limit cycles are fixed points in Poincare sections ) 2 types of bifurcation diagrams: • control parameter vs location of fixed point. • control parameter vs characteristic value. Bifurcations in 1-D x 1 x a y y Normal form δ> 0 repellor δ< 0 node Bifurcation at δ= 0 df 2 x dx x x2 d2 f 2 2 dx 4 2 -4 -2 2 -2 -4 -6 No Fixed points if μ< 0. -8 -10 2 fixed points for μ> 0 x* x* node repellor • For μ= 0, x* = 0 is a saddle point. • For μ> 0, x* = ±μ form repellor-node pair. • μ= 0 is repellor-node bifurcation point. • Other names: saddle-node / tangent / fold bifurcation Note that for μ= 0, x* = 0 is structurally unstable. 4 Lifted (Suspended) State Space Flow along extra dimension X2 always towards original axis X1. x1 x12 Repellor ↓ Saddle point x2 x2 Node ↓ Node No fixed point Bifurcation in 2-D The Brusselator 1 B 2 2 B 2 4 2 B > 4, λ± real (Transcritical) bifurcation at B = 2. Node → Repellor + limit cycle 4 B 0, λ± complex Normal Form Equations Fixed point at x = 0. Bifurcation at μ = 0. Saddle – node bifurcation: x1 x12 x2 x2 μ> 0 : node at saddle at μ< 0 : no fixed point μ= 0 : bifurcation x1, x2 ,0 x1, x2 ,0 Transcritical bifurcation: x x x y y 2 fixed points switching types of stability Pitchfork bifurcation: x x x 2 y y 1 → 3 fixed points Limit Cycle Bifurcations Spiral-in-spiral-out bifurcation at Re(λ) = 0 Hopf bifurcation: birth of stable limit cycle Poincare section of limit cycle in 2-D → 1-D dynamics Normal form: Polar coordinates: x1 x2 x1 x12 x22 x2 x1 x2 x12 x22 r x x r r r2 f r 1 2 1 2 2 tan 1 x2 x1 t 0 t f r r r2 f r 3r 2 Fixed points: for μ< 0 r* = 0 spiral node for μ> 0 r* = 0 r* spiral repellor limit cycle, period = 2π Hopf bifurcation at μ= 0 Limit cycle: asymptotic time-dependent behavior of dissipative system.
© Copyright 2026 Paperzz