1 The Maximum Principle: yt+1 - yt = Q yt , zt ,t s.t. G yt , zt ,t 0 T max F yt , zt ,t yt ,zt t =0 1. For each t : zt maximizes the Hamiltonian H yt , zt ,πt+1 ,t s.t. G yt , zt ,t 0 2. πt+1 - πt = -H *y yt ,πt+1 ,t 3. yt+1 - yt = H π* yt , πt+1 ,t H * yt ,πt+1 ,t = max H yt ,zt ,πt+1 ,t s.t. G yt ,zt ,t 0 zt H yt ,zt ,πt+1 ,t = F yt ,zt ,t πt+1Q yt ,zt ,t 2 The Maximum Principle: yt+1 - yt = Q yt , zt ,t s.t. G yt , zt ,t 0 T max F yt , zt ,t yt ,zt t =0 1. For each t : zt maximizes the Hamiltonian H yt , zt ,πt+1 ,t s.t. G yt , zt ,t 0 πt+1 - πt = -H *y yt ,πt+1 ,t 2. 3. yt+1 - yt = H * π yt , πt+1 ,t H * yt ,πt+1 ,t = max H yt ,zt ,πt+1 ,t s.t. G yt ,zt ,t 0 H yt ,zt ,πt+1 ,t = F yt ,zt ,t πt+1Q yt ,zt ,t zt H yt ,zt ,πt+1 ,t = F yt ,zt ,t πt+1Q yt ,zt ,t 3 The Maximum Principle: yt+1 - yt = Q yt , zt ,t s.t. G yt , zt ,t 0 T max F yt , zt ,t yt ,zt t =0 1. For each t : zt maximizes the Hamiltonian H yt , zt ,πt+1 ,t s.t. G yt , zt ,t 0 2. 3. πt+1 - πt = -H *y yt ,πt+1 ,t yt+1 - yt = H * π yt , πt+1 ,t H yt ,zt ,πt+1 ,t = F yt ,zt ,t ππt+1 t+1 Q yt ,zt ,t 4 Continuous Time t = 0,1,2,3,....T t 0 t = 0, t,2 t,3t, ....,nt, ...... T n = 0,1,2,3......, t 5 Continuous Time y t + t - y t = Q y t , z t ,t t y t + t - y t t = Q y t , z t ,t y t = Q y t , z t ,t G yyt t,z ,t z,tt ,t0 0 G T/Δt max F y i t , z i t ,i t t i=0 6 Continuous Time T/Δt F y i t , z i t ,i t t i=0 Τ 0 F y t ,z t ,t dt t 0 defining the Hamiltonian H y,z,π,t = F y,z,t πQ y,z,t The conditions: 2. 3. πt+1 - πt = -H *y yt ,πt+1 ,t yt+1 - yt = Hπ* yt , zt ,t become ……7 Continuous Time π t = -H * y y t = H * π y t ,π t ,t y t , z t ,t Thus…… 8 The Maximum Principle: T max 0 y t ,z t y = Q y t , z t ,t F y t ,z t ,t dt s.t. G y t , z t ,t 0 1. For each t : z t maximizes the Hamiltonian H y t , z t ,π t ,t s.t. G y t , z t ,t 0 y t ,π t ,t 2. π = -H 3. y t = H * y * π y t , z t ,t H * y t ,π t ,t = max H y t , z,π t ,t s.t. G y t , z,t 9 0 z Example: capital (stock variable) k = w + rk - c wage rate interest rate k 0 = k T = 0 0 T max consumption (control variable) ln c t e dt -ρt utility discount rate (individual time discount rate ln c c 10 Example: H = ln c e + π w + rk - c -ρt First Order Condition: -1 -ρt c e -ρt e c= π -π =0 substitute the optimal value of c in H to find H* H* = - ln π + ρt e -ρt H * k= = w + rk - π -1e -ρt π H * π== -rπ k + π w + rk - e -ρt 11 Example: H * -1 -ρt k= = w + rk - π e π H * π== -rπ k π t = π0 e -rt k = w + rk - π e -1 0 ke t -rt t =T π0 ' r - ρ t -rt -rt -1 -ρt k rk e = we π = 0 e -rt -ρt 1 e 1 e ke -rt - k 0 = w - π0-1 r ρ 12 Example: -ρt -ρt e e = c= -rt π0 e π = π0 e -1 r - ρ t if r > ρ then c < w for small t's and later c > w if r < ρ then c > w for small t's and later c < w 13
© Copyright 2026 Paperzz