MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL AVIATION UNIVERSITY Institute of Air Navigation Air Navigation Systems Department MASTER’S DEGREE THESIS НЕЙРОМЕРЕЖЕВА МОДЕЛЬ ДОПУСКУ СТУДЕНТА В ТРЕНАЖЕРНІЙ ПІДГОТОВЦІ АВІАДИСПЕТЧЕРА NEURAL NETWORK MODEL OF STUDENT ADMISSION IN AIR TRAFFIC CONTROLLER SIMULATOR TRAINING Performed by Bilko A.P. Supervisor Shmelova T.F. Kyiv 2015 PURPOSE: implementation of Multi-Layer Feedforward Neural network of student admission in Air Traffic Controller simulator training with the help of programme language Visual Basic for Application (Microsoft Excel). TASKS: 1. Analysis of Air Traffic Controllers training. 2. Designation of requirements for simulator training. 3. To evaluate pre-simulating training according to airspace part, which provided ATC service. 4. To create Neural network model and its realize for admission student according pre-simulating in automatic form. METHODS using in the master’s degree thesis: 1. Expert Judgment Method. 2. Neural network. 2 Actuality Other causes 20% Human error 80% TRAINING 3 Air Traffic Controller Training review There are four types of Pre-simulations training: 1. Skill Acquisition (SA). 2. Part-Task Practice (PTP). 3. Guided Skill Acquisition (GSA). 4. Guided Part-Task Practice (GPTP). 4 Block-scheme of pre-simulating and simulator training of student’s Simulator Training Basic Training Air Traffic Management Control zone (CTR) Navigation Meteorology Pre – simulating Training Ready Not ready Terminal control area (TMA) Aircrafts Control area (CTA) Human Factor ... 5 Estimation difficulty of airspace part, which provided ATC service Questionnaires for experts – ATC with working experience. 1. Matrix of individual preferences. Evaluation of complexity of airspace parts (CTR, TMA and CTA). Obtained – Ri, , where m number of expert; Ri – system of preference of i-expert. 2. Matrix of group preferences obtained, for CTR: m RgrCTR RiCTR i 1 m 2,64 3. Coordination of expert’s opinion. 3.1. Calculation of dispersion D. 2 m m 2 Rgr Ri RgrCTR RiCTR 0,401099 D i 1 i 1 m 1 m 1 6 3.2. Calculation of square average deviation σ: σ D DCTR 0,633324 3.3 Obtained coefficient of the variation ν: ν σ 100 Rgr σ CTR 100 23,9636 % RgrCTR If νCTR,TMA,CTA≤33 %, opinion coordinated, and obtained system of expert group. Calculations shows that opinion was coordinated. 4. Weight coefficients: wj Cj n C j j 1 Calculations for TMA and CTA would be the same variant. 7 Result of estimations of difficulty of airspace part (CTR, TMA and CTA): Matrix of group preference: Coordination of expert’s opinion Rgr Di i vi % CTR x1 2,64286 0,40110 0,63332 23,9636 TMA x2 1,14286 0,13186 0,36313 31,77445 CTA x3 2,21429 0.33516 0,57893 26,14542 The results of obtaining weight coefficient: № Zone Ri rg Cj wi 1 CTR 2,64286 1,12222 0,22619 2 TMA 1,14286 1,21229 0,47619 3 CTA 2,21428 1,14035 0,29762 8 Graphical presentation of estimations difficulty airspace part: control zone (CTR), terminal control area (TMA) and control area (CTA) : 9 Interpretation of Multi-Layer Feedforward Neural network of student admission in Air Traffic Controller simulator training 1 – Input layer - 5 disciplines: 1. Navigation (NAV). 2. Air Traffic Management (ATM). 3. Meteorology (MET). 4. Human Factor (HF). 5. Aircrafts (ACTFTs). 2,3 and 4 – Hidden layers: 1. T – specified number of hours in study of disciplines, which regulates as educational Plan; 2. tcompl – time of task\test completed; 3. wi – test mark. 10 Multi-Layer Feedforward Neural network of student admission in Air Traffic Controller simulator training T Input NAV T1 ATM T2 MET T3 HF T4 ACFTs T5 tcompl wi tcompl1 wi1 tcompl2 wi2 tcompl3 wi3 tcompl4 wi4 tcompl5 wi5 Output T(1,2,3,4,5) tcompl(1,2,3,4,5) w i(1,2,3,4,5) W (T, t, wi) 11 Program realization of Neural network model 1 situation – student ready to simulator training: 1 T >Tmin № c\n Input (dendrites) 2 tcompl >tmin 3 wi >wmin Ranks Estimates Weight Specified Estimated Time of Maximum Admission Test mark Ri Ci coefficients number of number of task\test time for of time for (wi) (synapse) hours in hours for completed tests (min) testing wj study of preparation (tcompl) disciplines, wj Xi which (axons) regulates as educational Plan (T) Minimum Admission score according to mark 2 1 Navigation 0,8 0,266666667 90 24 55 55 Ready 90 60 Ready 1 0,333333333 0,6 0,2 89 29,66666667 233 46,6 55 55 55 55 Ready Ready 80 70 60 60 Ready Ready 0,4 0,133333333 162 21,6 55 55 Ready 80 60 Ready 0,2 0,066666667 611 40,73333333 40 55 Ready 60 60 Ready 1 2 Air Traffic Management 3 Meteorology 3 4 4 Aircrafts 5 5 Human Factor Minimum Estimated coefficient 161,2 3 1 162,6 Function of activation ИСТИНА ИСТИНА Ready 12 2 situation – student don’t ready to simulator training according to ATM: T < Tmin 1 № c\n Input (dendrites) 1 Navigation Ranks Estimates Weight Specified Estimated Ri Ci coefficients number of number of (synapse) hours in hours for wj study of preparation disciplines, wj Xi which (axons) regulates as educational Plan (T) 2 0,8 0,266666667 Time of Maximum Admission Test mark task\test time for of time for (wi) completed tests (min) testing (tcompl) Minimum Admission score according to mark 90 24 55 55 Ready 90 60 Ready 1 2 Air Traffic Management 3 Meteorology 4 Aircrafts 5 Human Factor Minimum Estimated coefficient 3 4 5 161,2 1 0,333333333 70 23,33333333 55 55 Ready 80 60 Ready 0,6 0,2 233 46,6 55 55 Ready 70 60 Ready 0,4 0,133333333 162 21,6 55 55 Ready 80 60 Ready 0,2 0,066666667 611 40,73333333 40 55 Ready 60 60 Ready 3 1 156,2666667 Function of activation ИСТИНА ИСТИНА Not ready 13 3 situation – student don’t ready to simulator training accordin to time for tests: 2 tcompl < tmin № c\n Input (dendrites) 1 Navigation Ranks Estimates Weight Specified Estimated Ri Ci coefficients number of number of (synapse) hours in hours for wj study of preparation disciplines, wj Xi which (axons) regulates as educational Plan (T) 2 Time of Maximum Admission Test mark task\test time for of time for (wi) completed tests (min) testing (tcompl) Minimum Admission score according to mark 0,8 0,266666667 90 24 60 55 Not ready 90 60 Ready 1 0,333333333 89 29,66666667 55 55 Ready 80 60 Ready 0,6 0,2 233 46,6 55 55 Ready 70 60 Ready 0,4 0,133333333 162 21,6 60 55 Not ready 80 60 Ready 0,2 0,066666667 611 40,73333333 40 55 Ready 60 60 Ready 3 1 1 2 Air Traffic Management 3 Meteorology 4 Aircrafts 5 Human Factor Minimum Estimated coefficient 3 4 5 161,2 162,6 Function of activation ЛОЖЬ ИСТИНА Ready 14 4 situation – student don’t ready to simulator training according to mark: 3 wi < wmin № c\n Input (dendrites) 1 Navigation Ranks Estimates Weight Specified Estimated Ri Ci coefficients number of number of (synapse) hours in hours for wj study of preparation disciplines, wj Xi which (axons) regulates as educational Plan (T) 2 Time of Maximum Admission Test mark task\test time for of time for (wi) completed tests (min) testing (tcompl) Minimum Admission score according to mark 0,8 0,266666667 90 24 55 55 Ready 90 60 Ready 1 0,333333333 89 29,66666667 55 55 Ready 80 60 Ready 0,6 0,2 233 46,6 55 55 Ready 70 60 Ready 0,4 0,133333333 162 21,6 55 55 Ready 80 60 Ready 0,2 0,066666667 611 40,73333333 40 55 Ready 59 60 Not ready 3 1 1 2 Air Traffic Management 3 Meteorology 4 Aircrafts 5 Human Factor Minimum Estimated coefficient 3 4 5 161,2 162,6 Function of activation ИСТИНА ЛОЖЬ Ready 15 CONCLUSION 1. Done analysis of training and pre-simulating training of Air Traffic Controller. 2. Estimate control area’s (CTA, TMA) and control zone(CTR). 3. Build Multi-Layer Feedforward Neural network of student admission in Air Traffic Controller simulator training. 4. Program realization of Neural network in automatic form. 16 PUBLICATIONs: 1. T. F. Shmelova Estimation of pre-simulating training tasks complexity / T. F. Shmelova, V.A.Lazorenko, A.P. Bilko// Proceedings of the National Aviation University. – 2015. –№1. – 17-22 p. 2. A.P. Bilko, Neural network for automated estimation of pre-simulating training / A.P. Bilko, V.A. Lazorenko, O.V. Poluhovich, T.F. Shmelova, // 6th World Congress „Aviation in the XXIst century. Safety in Aviation And Space Technologies” NAU, Sept.24, 2014– С. 3.1.6– 3.1.10. 3. A.P. Bilko, Estimation of air traffic control zone/ A.P. Bilko// XIV Міхнародна науковапрактична конференція молодих учених і студентів “ Політ. Сучасні проблеми науки” НАУ, 2-3 квітня, 2014– С. 107 17 Thanks for your attention! 18
© Copyright 2026 Paperzz