Noname manuscript No. (will be inserted by the editor) An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming Nai-Yuan Chiang · Victor M. Zavala Abstract We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We aslo demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed. Keywords inertia · nonlinear programming · filter line-search · nonconvex · large-scale 1 Introduction Filter line-search strategies have proven effective at solving large-scale, constrained nonlinear programs (NLPs) [6, 12, 16, 37, 30]. This algorithmic approach is implemented in the widely used IPOPT package [38]. In a filter line-search setting, it is essential to detect the presence of negative curvature and to regularize the Hessian of the Lagrangian when such is present. This ensures that the computed step is a descent direction when the constraint violation is sufficiently small. This in turn prevents the filter from accepting iteration subsequences that only improve the constraint violation. The ability to handle negative curvature is essential when dealing with highly nonlinear and inherently ill-conditioned problems [43]. In a constrained NLP setting, the presence of negative curvature is detected using inertia information of the augmented matrix. Inertia informaNai-Yuan Chiang Mathematics and Computer Science Division, Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 Tel.: +1-630-252-3343 E-mail: [email protected] Victor M. Zavala Department of Chemical and Biological Engineering, University of Wisconsin-Madison 1415 Engineering Hall, Madison, WI 53706 Tel.: +1-608-262-6934 E-mail: [email protected] 2 Nai-Yuan Chiang, Victor M. Zavala tion is provided by symmetric indefinite factorization routines such as MA27, MA57, MUMPS, and PARDISO [2, 20, 21, 35]. An inertia-revealing preconditioning strategy based on incomplete factorizations has also been proposed that enables the use of iterative linear strategies such as QMR [36]. Unfortunately, many modern and efficient linear algebra strategies and libraries are not capable of providing inertia information. Examples include iterative techniques such as multigrid (geometric and algebraic) and Lagrange-Newton-Krylov [7, 8]; parallel libraries for graphics processing units (GPUs) and distributed-memory systems such as MAGMA, ELEMENTAL, Trilinos, and PETSc [1, 29, 4]; and decomposition strategies for stochastic optimization, optimal control, and network problems that are widely used in convex optimization [22, 26, 32–34, 41, 45]. Consequently, the need for inertia information hinders modularity, application scope, and scalability. Byrd, Curtis, and Nocedal recently proposed a line-search exact penalty framework that does not require inertia information [11]. In their approach, termination tests are included to guarantee that the search step provides sufficient progress in the merit function. This approach can also deal with inexact linear algebra and has been extended to deal with rank-deficient Jacobians [17]. The strategy has also proven to be effective when used within an interior-point framework [18]. Trust-region strategies provide a natural mechanism to detect negative curvature. Modern trust-region implementations for constrained NLP decompose the search step into tangential and normal components. The tangential step is computed by approximately solving a trustregion subproblem [10, 23, 28]. This is typically done by using a projected conjugate gradient (PCG) scheme that detects negative curvature at the inner iterates. In the presence of a direction of negative curvature, the PCG path is continued along this direction until it reaches the trustregion boundary. This approach is guaranteed to be globally convergent because it can always improve the Cauchy step (or revert to it) [15]. It is well-known, however, that the quality of the step can be poor when the PCG procedure is terminated prematurely and this can result in excessive shrinking of the trust-region and slow progress. A Lanczos approach can be used to improve the quality of the PCG step when this hits the trust-region boundary but this requires a more expensive procedure [24]. Under a trust-region setting, one is limited in the linear algebra techniques that can be used to compute the search step. In particular, one requires schemes that are compatible with the globalization approach (i.e., improve the progress of the Cauchy step). Linear algebra strategies such as direct factorizations, GMRES, and QMR are not compatible in this sense. This is important because some of these linear algebra strategies might handle difficult linear systems more efficiently than PCG. This observation has in fact motivated the implementation of a hybrid trust-region and line-search strategy in the widely used KNITRO package [40]. In addition, trust-region settings require tailored preconditioners that project (exactly or inexactly) the iterates onto the nullspace of the constraint Jacobian [23, 28]. This can be a limitation when the preconditioner does not have the required projection properties or when it involves an iterative scheme such as multigrid. A line-search setting has the practical advantage that any linear algebra scheme can be used to compute the step (as long as the computed step is a descent direction) and this provides computational flexibility. Such flexibility motivates our interest in line-search approaches. The price to pay in a line-search setting is that regularization of the Hessian matrix (convexification) might be needed and this tends to decrease the quality of the computed step and increase the number of trial step computations. Trust-region settings, on the other hand, have the advantage that no explicit regularization is needed (this is done implicitly thought the trust-region constraint) and this can enable more efficient handling of illposed problems such as those arising in parameter estimation [3]. Motivated by this property, we are interested in deriving step acceptance tests for line-search settings that limit the amount of regularization needed and that can better handle ill-posed problems. An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 3 In this work, we present an inertia-free filter line-search strategy for nonconvex NLPs. Motivated by curvature tests used in trust-region settings, the approach performs a curvature test along the tangential component of the computed step. The curvature test guarantees descent when the constraint violation is sufficiently small. When the test is not fulfilled, it triggers regularization of the Hessian matrix. We prove that global convergence of the algorithm can be guaranteed and that the norm of the step is a consistent criticality metric if the computed step satisfies the curvature test and if the iteration matrix is nonsingular at each iteration. These requirements are significantly less restrictive than the positive definiteness assumption for the reduced Hessian used in the standard filter line-search algorithm. We implement our developments in an interior-point framework and perform extensive numerical tests which include small-scale CUTE and Schittkowski problems as well as large-scale and highly nonlinear problems arising from power grid and natural gas networks. We demonstrate that two variants of the inertia-free approach are as efficient as the standard inertia detection strategy based on symmetric indefinite LBLT factorizations in terms of iteration counts. We also demonstrate that the inertia-free variants can reduce the number of trial factorizations and solution times because of increased flexibility. We also demonstrate that such flexibility enables us to handle ill-posed problems more efficiently. The paper is structured as follows. Section 2 presents the filter line-search algorithm of Wächter and Biegler [38, 39] in an interior-point framework and discusses assumptions needed to guarantee global convergence. Section 4 presents the new inertia-free strategies and establishes global convergence. Section 5 compares the numerical performance of both strategies. Section 6 presents concluding remarks. 2 Interior-Point Framework Consider the NLP of the form min x∈<n (1a) f (x) s.t. c(x) = 0 (1b) x ≥ 0. (1c) Here, x ∈ <n are primal variables, and the objective and constraint functions are f : <n → < and c : <n → <m , respectively. We use a logarithmic barrier framework with subproblems of the form µ min ϕ (x) := f (x) − µ x∈<n n X ln x(j) (2a) j=1 s.t. c(x) = 0 (2b) where µ > 0 is the barrier parameter and x(j) is the jth entry of vector x. We consider a framework that solves a sequence of barrier problems (2) and drives the barrier parameter µ monotonically to zero. To approximately solve each barrier problem, we apply Newton’s method to its optimality conditions: ∇x ϕµ (x) + ∇x c(x)λ = 0 (3a) c(x) = 0 (3b) 4 Nai-Yuan Chiang, Victor M. Zavala while enforcing x ≥ 0 along the search. Here, λ ∈ <m are multipliers for equality constraints. The primal variables and multipliers at iteration k are denoted as (xk , λk ). Their corresponding search directions (dk , λ+ k − λk ) can be obtained by solving the linear system dk g Wk JkT =− k . (4) ck Jk 0 λ+ k We refer to this system as the augmented system. Here, ck := c(xk ), Jk := ∇x c(xk )T ∈ <m×n , gk := ∇x ϕµk , Wk := Hk + Σk , Hk := ∇xx L(xk , λk ) ∈ <n×n , L(xk , λk ) := ϕµ (xk ) + λTk c(xk ), and Σk := Xk−2 with Xk := diag(xk ). One can show that the primal-dual approximation Σk ≈ Xk−1 Vk , where Vk := diag(νk ) and νk are multiplier estimates for the bounds (1c), can be used (j) (j) as long as the products xk νk remain proportional to µ [39, 18]. To enable compact notation, we define the augmented matrix Wk JkT Mk := . (5) Jk 0 We can also consider the computation of the search directions dk using the decomposition (6) dk = nk + tk . Here, nk is computed from Wk JkT Jk 0 nk · 0 , ck (7) gk + Wk nk , 0 (8) =− and tk is computed from Wk JkT Jk 0 tk λ+ k =− where λ+ k is the multiplier update. We define a two-dimensional filter of the form F := {(θ(x), ϕ(x))} with θ(x) = kc(x)k, ϕ(x) := ϕµ (x) for a fixed barrier parameter µ, where k · k is the Euclidean norm. At each value of µ, the filter is initialized as F0 := {(θ, ϕ) | θ ≥ θmax } (9) with a given parameter θmax > 0. The filter at iteration k is denoted as Fk . Given a search step dk , a line search is started from counter l ← 0 and αk,0 = αkmax ≤ 1 to define trial iterates xk (αk,l ) := xk + αk,l dk . We define mk (α) := αgkT dk (10) as the linear model of ϕ(xk + αdk ) − ϕ(xk ). We note that dk is a descent direction1 if mk (α) < 0. Having constants κθ > 0, sθ > 1, sϕ ≥ 1, γθ ∈ (0, 1), and ηϕ ∈ (0, 1), we consider the following conditions to check whether a trial iterate should be accepted. – Filter Condition FC: (θ(xk (αk,l )), ϕ(xk (αk,l ))) ∈ / Fk 1 We use the expression ”descent direction” with respect to the barrier function. An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 5 – Switching Condition SC: −mk (αk,l ) > 0 and [−mk (αk,l )]sϕ [αk,l ]1−sϕ > κθ [θ(xk )]sθ – Armijo Condition AC: ϕ(xk (αk,l )) ≤ ϕ(xk ) + ηϕ mk (αk,l ). – Sufficient Decrease Condition SDC: θ(xk (αk,l )) ≤ (1 − γθ )θ(xk ) or ϕ(xk (αk,l )) ≤ ϕ(xk ) − γϕ θ(xk ). The filter condition FC is the first requirement for accepting a trial iterate xk (αk,l ). If the pair (θ(xk (αk,l )), ϕ(xk (αk,l ))) ∈ Fk (i.e., the trial iterate is contained in the filter), then the step is rejected, and we decrease the stepsize. If the trial iterate is not contained in the filter, then we continue testing additional conditions. We have two possible cases: – If SC holds, then the step dk is a descent direction, and we check whether AC holds. If AC holds, then we accept the trial point xk (αk,l ). If not, we decrease the stepsize. – If SC does not hold and SDC holds, then we accept the trial iterate xk (αk,l ). If not, we decrease the stepsize. If the trial iterate xk (αk,l ) is accepted in the second case, then the filter is augmented as Fk+1 ← Fk ∪ {(θ, ϕ) | ϕ ≥ ϕ(xk ) − γϕ θ(xk ), θ ≥ (1 − γθ )θ(xk )} (11) with parameters γϕ ∈ (0, 1); otherwise, we leave the filter unchanged (i.e., Fk+1 ← Fk ). If the trial stepsize αk,l becomes smaller than αkmin and the step has not been accepted in either case, then we revert to feasibility restoration, and the filter is augmented. A strategy to obtain αkmin is proposed in [39]. We define the set Rinc as the set of iteration counters k in which feasibility restoration is called. We refer to the first condition of SDC as SDCC to emphasize that this condition accepts the trial iterate if it improves the constraint violation. Similarly, we refer to the second condition as SDCO to emphasize that this condition accepts the trial iterate if it improves the objective function. We refer to successful iterates in which the filter is not augmented (iterates in which the switching condition SC holds) as f -iterates. The filter line-search algorithm is summarized below. FILTER LINE-SEARCH ALGORITHM 0. Given starting point x0 , λ0 , constants θmax ∈ (θ(x0 ), ∞], γθ , γϕ ∈ (0, 1), ηϕ ∈ (0, 1), κθ > 0, sθ > 1, sϕ ≥ 1 and 0 < τ1 ≤ τ2 < 1. 1. Initialize filter F0 := {(θ, ϕ) : θ ≥ θmax } and iteration counter k ← 0. 2. Check Convergence. Stop if xk is a stationary point (i.e., satisfies (3)). 3. Compute Search Direction. Compute step (dk , λ+ k − λk ) from (6)-(8). 4. Backtracking Line-Search. (a) Initialize. Set αk,0 ← αkmax and counter ` ← 0. (b) Compute Trial Point. If αk,` ≤ αkmin revert to feasibility restoration in Step 8. Otherwise, set trial point xk (αk,` ) ← xk + αk,` dk . (c) Check Acceptability to the Filter. If FC does not hold, reject trial point xk (αk,` ), and go to Step 4e. (d) Check Sufficient Progress. i. If SC and AC hold, accept trial point xk (αk,` ) and go to Step 5. ii. If SC does not hold and SDC hold, accept trial point xk (αk,` ), and go to Step 5. Otherwise, go to Step 4e. 6 Nai-Yuan Chiang, Victor M. Zavala (e) New Trial stepsize. Choose αk,`+1 ∈ [τ1 αk,` , τ2 αk,` ], set ` ← ` + 1, and go to Step 4b. 5. Accept Trial Point. Set αk ← αk,` and xk+1 ← xk (αk,` ). 6. Augment Filter. If SC is not satisfied, augment filter using (11). Otherwise, leave filter unchanged. 7. Next Iteration. Increase iteration counter k ← k + 1 and go to Step 2. 8. Feasibility Restoration. Compute an iterate xk+1 that satisfies FC and SDC. Augment filter using (11), and go to Step 7. The above algorithm seeks to solve the barrier subproblem (2) approximately for a fixed µ. Once this problem is solved, we decrease the barrier parameter µ and we reset the filter (9). This outer loop is repeated until we find a stationary point for the original NLP (1). We highlight that the global convergence analysis of the filter line-search algorithm discussed in the next section does not require a particular stepsize rule for the multipliers (it only requires boundedness of the multiplier updates λ+ k ). Consequently, we do not provide a explicit stepsize rule in the above algorithm. This is left as an implementation issue at this point that is discussed in Section 5. 3 Inertia-Based Strategy The global convergence analysis of the filter line-search algorithm provided in [39] assumes a step decomposition of the form dk = Yk q̄k + Zk p̄k −1 q̄k := −(Jk Yk ) ck p̄k := −(ZkT Wk Zk )−1 ZkT (gk + Wk Yk q̄k ), (12a) (12b) (12c) where Yk ∈ <n×m and Zk ∈ <n×(n−m) are matrices such that the columns of [Yk Zk ] form an orthonormal basis for <n and the columns of Zk are the basis of the null space of Jk (i.e., Jk Zk = 0). The convergence analysis also relies on the criticality measure χk := kZk p̄k k = kp̄k k, (13) where the last identity follows from the orthonormality of Zk (i.e., ZkT Zk = I). The analysis requires assumptions (G) in [39]. To facilitate the discussion, we state the relevant assumptions here: Assumptions (G) (G1) There exists an open set Ω ⊆ <n with [xk , xk + dk ] ⊆ Ω for all k ∈ / Rinc in which ϕ(·) and c(·) are twice differentiable and their values and derivatives are bounded. (G2) The matrices Wk are uniformly bounded for all k ∈ / Rinc . (G3) The matrices Wk are uniformly positive definite on the null space of the Jacobian Jk . (G4) There exists a constant cA > 0 so that for all k ∈ / Rinc , the smallest singular value of Jk is bounded by cA > 0. (G5) There exists a constant θinc > 0 such that k ∈ / Rinc whenever θ(xk ) ≤ θinc . Assumptions (G3) and (G4) are needed to guarantee that χk is a valid criticality measure in the sense that it converges to zero as we approach a first-order stationary point. To see this, consider a subsequence {xki } with limi→∞ χki = 0 and limi→∞ xki = x∗ for some feasible point x∗ . If the Jacobian is of full row rank (implied by assumption (G4)) and (12b) holds, we have that limi→∞ q̄ki = 0 as limi→∞ xki = x∗ . From limi→∞ χki , (12c), and (13); and because An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 7 (G3) guarantees nonsingularity of the reduced Hessian we have that limi→∞ kZkTi gki k = 0. In Section 4 we will prove that a decomposition of the form (12) can always be obtained when the Jacobian is of full row rank and the augmented matrix is nonsingular (these are less restrictive assumptions). Consequently, the step computed from the augmented system (8) is equivalent to that obtained with (12). Positive definiteness of the reduced Hessian (G3) also guarantees that the search direction is of descent when the constraint violation is sufficiently small and the criticality measure is nonzero (see Lemma 2 in [39]). As we will discuss in Section 4, this descent lemma is essential for establishing global convergence. Assumption (G3) can be enforced in a practical setting by monitoring the inertia (number of positive, negative, and zero eigenvalues) of the augmented matrix Mk and correcting it (if necessary) by regularizing the Hessian matrix as Wk ← Wk + δI for δ ≥ 0. This convexification approach is justified from the results of Gould [25], which show that the reduced Hessian is positive definite if and only if the augmented matrix Mk has n positive, m negative, and no zero eigenvalues. We state this condition formally as Inertia(Mk ) = {n, m, 0}. (14) The augmented matrix Mk can be decomposed as LBLT by using symmetric indefinite factorizations where L is a unit lower triangular matrix and B is a block diagonal matrix composed of 1 × 1 and 2 × 2 diagonal blocks. From Sylvester’s law of inertia we know that the eigenvalues of Mk are the eigenvalues of B. Furthermore, because each 2 × 2 block is constructed by having one positive and one negative eigenvalue, the inertia of Mk can be estimated from the inertia of B [9]. We can enforce assumption (G3) using the following procedure. The matrix Mk is decomposed as LBLT for δ = 0 and the search direction dk is computed using this decomposition. If the inertia is correct (i.e., condition (14) is satisfied), the search direction dk is used as trial step in the line-search procedure. If the inertia is not correct, the regularization parameter δ is increased, the augmented matrix is refactorized and a new direction dk is obtained. The procedure is repeated until the matrix Mk has the correct inertia. Heuristics are incorporated to accelerate the rate of increase/decrease of δ in order to ensure that the number of trial factorizations is not too large (because each factorization is computationally expensive). The inertiabased regularization strategy implemented in the current version of IPOPT [38] is shown below. INERTIA-BASED REGULARIZATION (IBR) IBR-1 IBR-2 IBR-3 IBR-4 Factorize Mk with δ = 0. If (14) holds, compute dk and stop. If δ last = 0, set δ ← δ̄ 0 , otherwise set δ ← max{δ̄ min , κ− δ last }. Factorize Mk with current δ. If (14) holds, set δ last ← δ, compute dk and stop. If δ last = 0, set δ ← κ̂+ δ, otherwise set δ ← κ+ δ and go to IBR-3. Here, 0 < δ̄ min < δ̄ 0 , 0 < κ− < 1 < κ+ < κ̂+ are given constants. 4 Inertia-Free Strategies Estimating the inertia of Mk can be complicated or impossible when a decomposition of the form LBLT is not available. As we noted in the introduction, this situation limits our options for computing the search step and motivates us to consider inertia-free strategies. If we take one step back, we realize that the primary practical intention of inertia correction is to guarantee that the direction dk is of descent when the constraint violation is sufficiently small. This approach, 8 Nai-Yuan Chiang, Victor M. Zavala however, introduces a disconnect between the regularization procedure (IBR) and the filter linesearch globalization procedure. In particular, the inertia test (14) is based solely on the structural properties of Mk and not on the computed direction dk . Hence, the regularization procedure IBR can implicitly discard productive descent directions in attempting to enforce a correct inertia. We thus consider another route to enforce descent. We first discuss a inertia-free strategy that uses the step decomposition (6), system (7)-(8), and the criticality measure Ψkt := ktk k. (15) As we will argue in Section 4.1, a step decomposition is not strictly necessary, but it is advantageous for the analysis and can be used to enable the use of PCG strategies [23]. For our analysis we make the following assumptions. Assumptions (RG) (RG1) There exists an open set Ω ⊆ <n with [xk , xk + dk ] ⊆ Ω for all k ∈ / Rinc in which ϕ(·) and c(·) are twice differentiable and their values and derivatives are bounded. (RG2) The matrices Wk are uniformly bounded for all k ∈ / Rinc . (RG3) There exists a constant αt > 0 such that the step components nk , tk satisfy the following curvature condition (RG3a): tTk Wk tk + max{tTk Wk nk − gkT nk , 0} ≥ αt tTk tk . (16) Furthermore, the augmented matrix Mk is nonsingular and its inverse is bounded for all k∈ / Rinc (RG3b). (RG4) There exists a constant cA > 0 so that for all k ∈ / Rinc , the smallest singular value of Jk is bounded by cA > 0. (RG5) There exists a constant θinc > 0 such that k ∈ / Rinc whenever θ(xk ) ≤ θinc . The key difference between assumptions (RG) and assumptions (G) used in the standard filter line-search algorithm is that we do not require positive definiteness of the reduced Hessian (G3). This requirement is replaced by assumptions (RG3) and we now show that these are less restrictive and sufficient to guarantee global convergence. We begin by showing that conditions (RG3b) and (RG4) are sufficient to guarantee that the reduced Hessian is nonsingular and that (15) is a valid criticality measure. Lemma 1 Let (RG3b) and (RG4) hold and define M = Mk , W = Wk , Z = Zk , and J = Jk . Then (i) the reduced Hessian Z T W Z is nonsingular and (ii) the inverse of M can be expressed as Minv = W JT J 0 −1 = P (I − P W )J T V −1 −1 −1 V J(I − W P ) −V J(W − W P W )J T V −1 (17) with P = Z(Z T W Z)−1 Z T and V = JJ T . (18) An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 9 Proof: Part (i) follows from Lemmas 3.2 and 3.4 in [25]. These results establish that if the Jacobian is of full row rank (RG4) there exists a nonsingular matrix R such that I (19) RM RT = Z T W Z . I From Sylvester’s law of inertia and the structure of RM RT we have that Inertia(M ) = Inertia(Z T W Z) + {m, m, 0} . (20) Consequently, the number of zero eigenvalues of M is equal to the number of zero eigenvalues of Z T W Z. By assumption (RG3b) we know that M is nonsingular and thus we know that it does not have zero eigenvalues. Consequently, Z T W Z does not have zero eigenvalues either and therefore is nonsingular. To prove (ii), we first note that (RG3b) and (RG4) guarantee that P exists. We denote the blocks of Minv M as A11 , A12 = AT21 , A22 , and we seek to prove that Minv M = I. By direct calculation and by noticing that J T (JJ T )−1 J = I − ZZ T [5, p. 20] and JZ = 0, we obtain A11 = W P + J T V −1 J(I − W P ) = W P + (I − ZZ T )(I − W P ) = I − ZZ T + ZZ T W Z(Z T W Z)−1 Z T (21a) =I T T −1 A12 = W (I − P W )J (JJ ) T T T T −1 − J (JJ ) T T −1 J(W − W P W )J (JJ ) T −1 = ZZ (W − W P W )J (JJ ) = ZZ T W − ZZ T W Z(Z T W Z)−1 Z T W J T (JJ T )−1 (21b) =0 T T −1 A22 = J(I − P W )J (JJ ) = J(I − Z(Z T W Z)−1 Z T W )J T (JJ T )−1 = JJ T (JJ T )−1 − JZ(Z T W Z)−1 Z T W J T (JJ T )−1 (21c) = I. The proof is complete. From (7), (8), and the explicit form of the inverse of Mk in (17) we have that, nk = −(I − Zk (ZkT Wk Zk )−1 ZkT Wk )JkT (Jk JkT )−1 ck , (22) tk = −Zk (ZkT Wk Zk )−1 ZkT (gk + Wk nk ). (23) and We thus see that the tangential step is equivalent to the tangential component Zk p̄k obtained from the decomposition (12). Consequently, Lemma 1 implies that an expression for the tangential step of the form in (12) can always be obtained if the Jacobian is of full row rank and the augmented matrix is nonsingular. We also note that the expression for the normal component in (12) is not equivalent to that in (22) but this is not necessary as long as nk obtained from (7) is bounded and decays to zero as we approach a feasible point (equivalence can be achieved by replacing Wk with I in (7)). These observations allow us to prove that the measure (15) is a valid criticality measure under assumptions (RG), as stated in the next result. 10 Nai-Yuan Chiang, Victor M. Zavala Theorem 1 Consider a subsequence {xki } with limi→∞ xki = x∗ for a feasible x∗ , let (RG3b) and (RG4) hold, let nki solve (7), and let tki solve (8). Then lim Ψkti = 0 =⇒ lim kZkTi gki k = 0 i→∞ i→∞ for Zki spanning the null space of Jki . Proof: Define M := Mki , W := Wki , J := Jki , and Z := Zki . Boundedness of nk follows from (RG1), which guarantees that the right-hand side of the augmented system (7) is bounded and from (RG3b) which guarantees that the inverse of Mk is bounded. Boundedness of nk together with (RG1) and (RG2) guarantee that the right hand side of (8) is bounded. This fact, together with (RG3b), guarantee that tk is bounded. We thus have that condition limi→∞ xki = x∗ for feasible x∗ ensures limi→∞ nki = 0. From Lemma 1 we know that Z T W Z is nonsingular and therefore the projection matrix Pki exists and is nonsingular. From (15), (23), and limi→∞ nki = 0 as limi→∞ xki = x∗ we obtain the result. We now show that the curvature condition of assumption (RG3a) is sufficient to ensure that the step dk is a descent direction. Lemma 2 Let assumptions (RG1)-(RG5) hold. If xki is a subsequence of iterates for which Ψkti ≥ with a constant independent of i, then there exist positive constants 1 , 2 such that θki ≤ 1 =⇒ mki (α) ≤ −2 . α Proof: Define W := Wki , J := Jki , g := gki , d := dki , Ψ := Ψkti , θ := θki , n := nki , and t := tki . Multiplying the first row of (8) by tT and recalling that Jt = 0, we obtain tT W t = −g T t − tT W n. We know that g T d = g T n + g T t. Thus, combining terms, we obtain −g T d = tT W t + tT W n − g T n. We consider two cases. In the first case we have that tT W n − g T n < 0, and the curvature condition (16) guarantees that tT W t ≥ αt tT t and −g T d ≥ αt tT t + tT W n − g T n. From (RG1) we can obtain the bounds |tT W n| ≤ c̄1 Ψ θ and |g T n| ≤ c̄2 θ for c̄1 , c̄2 > 0. From (15) we have that ktk = Ψ , and we thus have g T d ≤ −αt Ψ 2 + c̄1 Ψ θ + c̄2 θ c̄2 ≤ Ψ −αt + c̄1 θ + θ . n o 2 αt Defining 1 := min θinc , 2(c̄1 +c̄ with θinc from (RG5), it follows that for all θ ≤ 1 we have 2) 2 m(α) ≤ −α2 with 2 := 2αt . In the second case, we have that tT W n − g T n ≥ 0 and the curvature condition guarantees that tT W t + tT W n − g T n ≥ αt tT t and −g T d ≥ αt tT t. In this case the result follows with 1 := θinc because c̄1 = c̄2 = 0 and for 2 defined previously. The descent lemma guarantees that the objective function will be improved at a subsequence of nonstationary iterates (i.e., those with Ψkti ≥ ) having a sufficiently small constraint violation An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 11 θki . This implies that f -iterates will eventually be accepted and the filter is eventually not augmented. This in turn implies that an infinite subsequence of nonstationary iterates cannot exist. We now prove that assumptions (RG) guarantee global convergence of the filter line-search algorithm. Theorem 2 Let assumptions (RG) hold. The filter line-search algorithm delivers a sequence {xk } satisfying lim θ(xk ) = 0 (25a) lim inf Ψ t (xk ) = 0. (25b) k→∞ k→∞ Proof: We go through the results leading to the proof of Theorem 2 in [39] and argue that our assumptions (RG) are sufficient. Unless otherwise stated, all lemmas refer to those in [39]. Boundedness of dk follows from boundedness of its components nk and tk which in turn follow from (RG1), (RG2), and (RG3b), as was argued in the proof of Theorem 1. We can also use similar arguments to prove that boundedness of λ+ k follows from boundedness of nk , and from (RG1), (RG2) and (RG3b). Boundedness of |mk (α)| follows from (RG1). Lemma 2 is replaced by the descent Lemma 2 of this work. Lemma 3 are standard bounding results that follow from Taylor’s theorem and require only (RG1). Lemma 4 follows from the descent Lemma 2 of this work. Lemma 6 requires only (RG1). Lemma 8 requires the descent Lemma 2 of this work. Lemma 10 establishes that for a subsequence of nonstationary iterates the filter is eventually not augmented. This requires the descent Lemma 2 of this work. The result follows. The curvature condition (16) of assumption (RG3a) can hold even if the reduced Hessian matrix is not positive definite, as required by assumption (G3) in the standard filter line-search algorithm. Consequently, the curvature condition is less restrictive. If the curvature condition does not hold for the computed step, we can enforce it by regularizing the Hessian matrix Wk ← Wk + δI. Specifically, the curvature condition (16) can always be satisfied for sufficiently large δ and sufficiently small αt satisfying αt ≤ λmin (ZkT Wk Zk ). The reason is that tk lies on the null space of Jk and, consequently, can always be expressed as tk = Zk u for a given nonzero vector u and the curvature condition then implies that uT ZkT Wk Zk u ≥ αt uT u. We also know that an appropriate αt exists for any δ because λmin (ZkT Wk (δ)Zk ) is an increasing function of δ. Note also that the term (max{tTk Wk nk − gkT nk , 0}) does not affect these properties. This is because, if the argument is negative, then this is set to zero; and, if the argument is positive, it provides additional flexibility to satisfy the curvature condition. We can enforce nonsingularity of Mk and boundedness of its inverse, as required by assumption (RG3b), by regularizing the Hessian Wk as well while making sure that (RG2) holds. This is necessary to guarantee that both nk and tk are bounded. Note also that nonsingularity of Mk can be monitored using a linear solver and boundedness of nk and tk can be monitored directly. These observations lead to the following inertia-free regularization (IFR) procedure: INERTIA-FREE REGULARIZATION (IFR) IFR-1 Given constant αt > 0, factorize Mk with δ = 0 and compute nk , tk from (7) and (8). If tk satisfies the curvature condition (16) and Mk satisfies (RG3b), set dk = tk +nk , and terminate. IFR-2 If δ last = 0, set δ ← δ̄ 0 , otherwise set δ ← max{δ min , κ− δ last }. IFR-3 Given constant αt > 0, factorize Mk with current δ and compute nk , tk from (7) and (8). If tk satisfies (16) and Mk satisfies (RG3b), set dk ← nk + tk , and terminate. IFR-4 If δ last = 0, set δ ← κ̂+ δ, otherwise set δ ← κ+ δ and go to IFR-3. 12 Nai-Yuan Chiang, Victor M. Zavala We make the following remarks: – The curvature condition (16) is enforced at every iteration. In principle, however, one can enforce it only at iterations in which the constraint violation is less than a certain small threshold value θsml . This approach is consistent with the observation that the switching condition SC needs to be checked only at iterations with small constraint violation [39]. In either case, however, we might need to regularize the Hessian in order to enforce nonsingularity of Mk at every iteration. – A potential caveat of the inertia-free strategy is that it cannot guarantee that the step computed via the augmented system is a minimum of the associated quadratic program (the inertia-based approach guarantees this). Consequently, while enabling global convergence with enhanced flexibility is a great benefit of inertia-free strategy, the potential price to pay is the possibility of having a larger proportion of steps that are accepted because of improvements on constraint violation and not on the objective function. This situation might ultimately manifest as a tendency to get attracted to first-order stationary points with larger objective values than those obtained with the inertia-based strategy. We provide numerical results in Section 5 to discuss this issue further. – As seen in Lemma 2, the term (max{tTk Wk nk − gkT nk , 0}) in the curvature condition is harmless and is included only to provide additional flexibility. Because of this, one might also consider the simpler test tTk Wk tk ≥ αt tTk tk and still guarantee convergence. – The normal component nk can also be computed from system (7) by replacing Wk with I. This, in fact, is a more natural choice than our approach because the normal and tangential components correspond to the decomposition (12) for Yk = JkT . Moreover, this approach naturally guarantees that the corresponding augmented matrix is bounded and that the normal step is bounded. This, approach, however, would require the solution of a linear system with a different coefficient matrix as the one used to compute the tangential step. – Assumption (RG3b) is needed to guarantee that the tangential step is bounded. In practice, however, this condition might be unnecessarily strong if the normal step is guaranteed to be bounded. This is because, in principle, one could still compute a productive tangential step that satisfies (RG3a) even if (RG3b) does not hold. Establishing convergence in this case, however, would require a more sophisticated analysis. – Assumption (RG1) can be guaranteed to hold only if all iterates xk remain strictly in the interior of the nonnegative orthant. This condition guarantees that the barrier function ϕµ (xk ) and its derivatives are bounded. One can show that Theorem 3 in [39] holds under assumptions (RG). This result establishes that the iterates xk remain in the strict interior of the feasible region if the maximum stepsize αkmax is determined by using the following fraction-tothe-boundary rule αkmax := max{α ∈ (0, 1] : xk + αdk ≥ (1 − τ )xk }, (26) for a fixed parameter τ ∈ (0, 1). The full row rank assumption of Jk (RG4), together with the assumption that its rows and the corresponding rows of the active bounds of xk are linearly independent as well as the nonsingularity of the reduced Hessian (which follows from (RG3b) and Lemma 1), is sufficient for establishing the result. 4.1 Alternative Inertia-Free Tests Computing the normal and tangential components of the step separately can be beneficial in certain situations. For instance, the use of a PCG scheme provides a mechanism to perform the An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 13 curvature test tTk,j Wk tk,j ≥ αt tTk,j tk,j (27) on the fly at each PCG iteration j and thus terminate early and save some work if the test does not hold for the current regularization parameter δ. This approach can also be beneficial because more test directions are used to identify negative curvature. This approach, however, requires a preconditioner that projects the iterations onto the null space of the Jacobian, which might not be available in certain applications. In some applications it might be desirable to operate directly on the full step dk . In this case, we can impose a curvature condition of the form T T dTk Wk dk + max{−(λ+ k ) ck , 0} ≥ αd dk dk , (28) with dk computed from (4). To argue that test (28) is consistent, we use the criticality measure Ψkd := kdk k. (29) If (RG3b) and (RG4) hold, we have from Lemma 1 and equation (4) that dk = −Pk gk − (I − Pk Wk )JkT (Jk JkT )−1 ck = −Zk (ZkT Wk Zk )−1 ZkT (gk − Wk JkT (Jk JkT )−1 ck ) − JkT (Jk JkT )−1 ck . (30) If we set Yk = JkT , we have that dk has the same structure as the step decomposition in (12). Moreover, we have that Ψkd = Ψkt + O(kck k). (31) T Consequently, the results of Theorem 1 still hold and Ψkd is a valid criticality measure. If −(λ+ k ) ck < + 0, from (28), (RG1), (RG4), and (RG3b) we have that kλk k ≤ κ for some κ > 0 and, therefore, gkT dk = −dTk Wk dk + dTk JkT λ+ k = −dTk Wk dk + cTk λ+ k ≤ −αd (Ψkd )2 + κθk . (32) T Consequently, the results of Lemma 2 hold with appropriate constants. If −(λ+ k ) ck ≥ 0 holds the result follows with κ = 0. The curvature condition (28) holds for any δ and αd ≥ λmin (Wk ), and we note that the term T max{−(λ+ k ) ck , 0} is harmless and is used only to enhance flexibility. 5 Numerical Results In this section we benchmark the inertia-based and inertia-free strategies using the PIPS-NLP interior-point framework [14]. We first describe the implementation used to perform the benchmarks. We then present results for small-scale problems and large-scale problems arising from different applications. 14 Nai-Yuan Chiang, Victor M. Zavala 5.1 Implementation PIPS-NLP is an object-oriented interior-point framework implemented in C++ that facilitates the communication of model structures and the development of linear algebra strategies. These capabilities enable us to solve large-scale problems on parallel computing architectures. The algorithmic framework of PIPS-NLP follows along the lines of that of IPOPT [38] but we do not implement a feasibility restoration phase and watchdog heuristics. If the restoration phase is reached, we terminate the algorithm. We prefer to use this approach to isolate the effects of inertia correction on performance. As in IPOPT [38], we allow steps that are very small in norm kdk k to be accepted even if they do not satisfy SDC or SAC, we use the same stepsize for both primal and equality constraint multipliers, use a primal-dual Hessian, and use a different stepsize for the bound multipliers. We have validated the performance of our implementation by comparing it with that of IPOPT, and we have obtained nearly identical results. We compare three regularization strategies: (1) IBR: inertia-based regularization, (2) IFRt: inertia-free regularization with the curvature test (16), and (3) IFRd: inertia-free regularization with the curvature test (28). We use the same parameters for IBR and IFR to increase/decrease the regularization parameter δ. For IFRd and IFRt we set both αt and αd to 10−12 as default. We also scale these parameters using the barrier parameter µ, as suggested in [18]. Strategy IFRd has been implemented in the latest version of IPOPT https://projects.coin-or.org/ Ipopt. For the IFRt strategy, we compute the normal step by solving the linear system (7) by factorizing Mk using MA57 [20], and we reuse the factorization to compute the tangential component from (8). For IBR we estimate the inertia of the augmented matrix using MA57. We use the optimality error described in [38, Section 2] with a convergence tolerance of 10−6 , we perform iterative refinement for the augmented system with a tolerance of 10−12 , and we set the maximum number of iterations to 1,000. If the line search cannot find an acceptable point within 50 trials, the last trial stepsize is used in the next iteration. We use a pivoting tolerance of 10−4 for MA57. Of the entire set of test problems studied in Section 5.2, 13% have Jacobians that are nearly rank-deficient. To deal with these instances, we regularize the (2,2) block of the augmented matrix as in IPOPT whenever we detect the augmented matrix to be singular [38, Section 3.1]. We emphasize that the convergence theory of this work and the supporting theory in [39] do not hold in this case. In particular, the tangential step computed in IFRt no longer lies exactly on the null-space of of the Jacobian and the inverse expression of the augmented matrix of Lemma 1 does not hold. The regularization parameter of the (2,2) block is, however, very small (10−8 − 10−11 ) and this is often sufficient to avoid singularity issues. The numerical results obtained indicate that the performance of IFRd and IFRt are not strongly affected by this regularization. 5.2 Small-Scale Tests We consider 929 test problems: 738 CUTE instances http://orfe.princeton.edu/˜rvdb/ ampl/nlmodels/cute/index.html, 188 Schittkowski instances http://orfe.princeton. edu/˜rvdb/ampl/nlmodels/cute/index.html, and three additional optimal power flow instances based on IEEE data. The power flow models are accessible at http://zavalab. engr.wisc.edu/data/testinertia. Out of the 929 test problems, PIPS-NLP can solve 828 problems with at least one of the regularization strategies implemented (89% of all the tests). This demonstrates the robustness of our implementation. The rest of the problems cannot be solved with any of the strategies considered because the solver either: 1) reaches the limit of 100 100 95 95 90 90 85 85 % Problems % Problems An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 80 75 80 75 70 70 IBR IFRd IFRt 65 60 0 15 1 2 3 log (τ) − Iterations 2 Fig. 1 Number of iterations 4 IBR IFRd IFRt 65 5 60 0 0.5 1 1.5 log (τ) − Fact/Iter 2 2.5 3 2 Fig. 2 Number of factorizations per iteration iterations; 2) requires feasibility restoration; 3) encounters an evaluation error in the problem functions; 4) requires regularization that reaches the maximum limit of 1 × 1012 . We only compare the performance of inertia-based and inertia-free strategies for the 828 problems for which at least one strategy was successful. The performance of the three strategies is presented in Table A1 in the Appendix. Here, we report the optimal objective (OBJ), the number of iterations (Iter), number of regularizations (Reg), and solution time in seconds. The total number of factorizations is equal to the number of iterations plus the number of regularizations. We use “-” to denote the tests that cannot be solved within the limit of iterations. The last three instances in the table are the energy problems. We present the numerical results in Table A1. From these results we have that 802, 796, and 794 test problems can be solved with IBR, IFRd and IFRt, respectively. Moreover, there are several instances that can only be solved with the inertia-free strategies (e.g., fltcher, and steenbrf). We can thus conclude that the inertia-free strategies are competitive. In Figures 1 and 2 we present Dolan-Moré profiles [19] for the total number of iterations and the average number of factorizations per iteration. In Figure 1 we can see that IBR requires fewer iterations to converge, but the differences are negligible. In Figure 2 we can see that IFRd and IFRt significantly outperform IBR in terms of the average number of factorizations required per iteration. From the tests reported in Table A1 we also estimate the average number of regularizations per iteration. We have that IBR requires 0.61 regularizations per iteration while IFRd and IFRt require 0.37 and 0.43 regularizations per iteration, respectively. We thus conclude that IFR strategies significantly reduce the amount of regularization needed. The inertia-free strategies yield the same final objective value as IBR in 85% of the instances. The performance in this respect is rather surprising. IBR yields better final objective values than IFRd and IFRt in 81 instances (e.g., instances hatfldd and hatflde), while IFRd and IFRt yield better objective values than IBR in 40 and 41 instances (e.g., instances s295 and s296), respectively. We could, in principle, attribute the tendency of IBR to reach better final objective values to the fact that the solutions of the augmented system are actual minimizers of the associated quadratic program at each iteration, whereas the solutions obtained with the inertia-free strategies are not. Consequently, we would expect that steps computed with IBR should yield improvements in the objective more often. Interestingly, we have found this not necessarily to be the case. To demonstrate this, we compared the percentages of steps accepted by the filter for the three strategies as a result of improvements in the objective function and in the constraint violation. We recall that a trial stepsize can be accepted under three cases: (1) SAC: both SC and 16 Nai-Yuan Chiang, Victor M. Zavala AC hold, (2) SDCO: SDC holds because of sufficient decrease in the objective, and (3) SDCC: SDC holds because of sufficient reduction in the constraint violation. In Table A2 we present the percentage of successful trial steps obtained for each case. We note that the percentages do not add to 100% in some cases because we allow the line search to accept very small steps and because we round the percentages to the nearest integer. To perform this comparison, we consider only problems in which all strategies are successful, and we consider only problems with constraints (the unconstrained instances have a percentage of acceptance for SAC of 100%). The last row presents the average percentages for all problems and from this we can see that IBR accepts 46% of the steps due to SAC. The corresponding percentages are 49% and 51% for IFRd and IFRt, respectively. If we add the total percentages in which the steps are accepted because of improvements in the objective (i.e., add SAC and SDCO), we have that the percentages are 76%, 75%, and 79% for IBR, IFRd, and IFRt, respectively. This result indicates that both inertiafree strategies are competitive with inertia-based strategy in achieving productive steps for the objective value. Moreover, we recall that IFRd and IFRt yield better final objective values than IBR in 40 and 41 instances. Because of this, we cannot draw general conclusions on the tendency of the strategies to provide better final objective values. This can be attributed to the presence of multiple local minima. We elaborate on the behavior of the strategies in instance IEEE 162 which is a highly nonlinear optimal power flow problem. From Table 1 we can see that IFRt and IFRd do not require regularization and converge in 23 iterations whereas IBR requires 145 iterations and 183 regularizations. This instance is an ill-posed problem that does not seem to have an isolated local minimum (inertia is not correct at the solution). In this instance, significant regularization is observed for IBR during the entire search. This degrades the quality of the steps and results in slow convergence. On the other hand, from the behavior of IFR we can see that productive steps can be achieved without regularizing the system. We observed similar behavior in other instances (e.g., static3, s368, and s389). For the IEEE 162f instance we performed an additional experiment in which we change the pivoting tolerance of MA57. In Table 1 we compare the performance of IFRd, IFRt and IBR. We note that the number of iterations and regularizations for IBR vary quite drastically as we change the pivoting tolerance. This is an indication that the inertia estimates provided by MA57 become unreliable. This parasitic behavior is confirmed when we compare against the performance of the inertia-free approaches, which require the same number of iterations in all cases. As can be seen, inertia-free strategies can be beneficial in solving ill-posed problems. In this respect, inertia-free strategies inherit some of the desirable features of trust-region settings. Table 1 Performance of inertia-based and inertia-free strategies for IEEE 162 under different pivoting tolerances. Pivoting Tolerance 1 × 10−2 1 × 10−4 1 × 10−6 1 × 10−8 Strategy IBR IFRd IFRt IBR IFRd IFRt IBR IFRd IFRt IBR IFRd IFRt Iter 138 23 23 109 23 23 178 23 23 592 23 23 Reg 182 0 0 132 0 0 236 0 0 883 0 0 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 17 We highlight that IFRt requires two backsolves to compute the search step (one for the normal component and one for the tangential component) while IFRd requires only one. The factorization of the augmented matrix is reused. The overhead of the additional backsolve is often one to two orders of magnitude smaller than the factorization overhead. We can see this from Table A1 if one considers large instances that do not require regularization and take the same number of iterations for IFRt and IFRd. For example, cvxqp3 requires one more second for IFRt than for IFRb out of 371 seconds of total time. For cvxqp2, IFRt requires 12 more seconds than IFRd while the total time is 123 seconds. 5.3 Large-Scale Tests We now demonstrate that the inertia-free strategies remain efficient in large-scale problems. We use large-scale stochastic optimization problems arising from security-constrained optimal power flow and stochastic optimal control of natural gas networks [13, 42]. Because of the large dimensionality of these instances we solve them using a distributed-memory Schur decomposition strategy implemented in PIPS-NLP. 5.3.1 Structured NLPs and Schur Decomposition We are interested in solving NLPs with the following structure: X min f0 (x0 ) + fω (xω , x0 ) (33a) ω∈Ω s.t. (λ0 ) (33b) (λω ) (33c) x0 ≥ 0 (ν0 ) (33d) xω ≥ 0, ω ∈ Ω (νω ) (33e) c0 (x0 ) = 0 cω (xω , x0 ) = 0, ω ∈ Ω The augmented matrix (4) of the structured NLP (33) can be permuted into the following blockbordered diagonal form: M̂1 B1T M̂2 B2T . . .. .. (34) M̂ = , T M̂|Ω| B|Ω| B1 B2 · · · B|Ω| M̂0 where Ω := {0, 1, 2, ..., |Ω|} is the scenario set [22, 44, 32]. The zero index corresponds to coupling variables. We refer to this coupling scenario as the zero scenario. We use M̂ to denote the permuted form of the augmented matrix Mk . The matrices Wω JωT (35) M̂ω = Jω 0 for ω ∈ Ω have a saddle-point structure. Here, Wω and Jω are the corresponding Hessian and Jacobian contributions of each scenario and the border matrices Bω define coupling between scenarios and the zero scenario. 18 Nai-Yuan Chiang, Victor M. Zavala The permuted augmented system can be represented as (36) M̂ ŵ = r̂, where ŵ = (ŵ1 , . . . , ŵ|Ω| , ŵ0 ) are the permuted search directions for primal variables and multipliers, respectively, and r̂ = (r̂1 , . . . , r̂|Ω| , r̂0 ) are the permuted right-hand sides. To solve the structured augmented system (36) in parallel, we use Schur decomposition. The solution of (36) can be obtained from ẑω = M̂ω−1 r̂ω ŵ0 = C(δ)−1 ω ∈ Ω \ {0}, ! X r̂0 − Bω ẑω , (37a) (37b) ω∈Ω ŵω = ẑω − M̂ω−1 BωT ŵ0 , where C = M̂0 − X ω ∈ Ω \ {0}, Bω M̂ω−1 BωT , (37c) (38) ω∈Ω is the Schur complement. Each slave processor is allocated with the information of certain blocks ω, and performs step (37a) by factorizing the local blocks M̂ω in parallel. A master processor gathers the contributions of each worker to assemble the Schur complement in (38) and computes the stepsize for the coupling variables using (37b). Having the coupling step ŵ0 , the slave processors compute the local steps ŵω in parallel using (37c). Because an LBLT factorization of the entire matrix M̂ is not available, its inertia can be inferred by using Haynsworth’s inertia additivity formula [27]: X Inertia(M̂ ) = Inertia(C) + Inertia(M̂ω ). (39) ω∈Ω We perform the factorization of the subblocks and of the Schur complement and check that the addition of their inertias satisfies the inertia condition Inertia(M̂ ) = {n, m, 0}. If this is not the case, all the Hessian terms Wω are regularized by using a common parameter δ until M̂ has the correct inertia. We note that obtaining the inertia of the Schur complement C by factorizing it with a sparse symmetric indefinite routine such as MA57 is not efficient because this matrix tends to be dense. More efficient parallel codes such as MAGMA or ELEMENTAL can be used but these are based on dense factorizations schemes that do not provide inertia information [1, 31]. This situation illustrates a practical complication that can be encountered when inertia information is required and motivates the development of inertia-free strategies. In our implementation we use MA57 to factorize the Schur complement (even if this is not the most efficient choice) because we seek to compare the performance of IFR with that of IBR. We note that the serial bottleneck of the Schur complement is associated to the formation and factorization of the Schur complement. Because the Schur complement must be re-assembled and factorized whenever the regularization term δ is adjusted, regularization can increase not only total work per iteration but also parallel performance. 5.3.2 Natural Gas and Power Grid Problems The stochastic optimal control problem for gas networks has the form presented in (40). This problem determines compressor policies ∆θω,` (τ ) up to a preparation time Td that build up enough gas in the network to sustain demand profiles dtarget (ω, τ ) under multiple scenarios j An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 19 ω ∈ Ω. The objective function is the expected cost of compression plus an error term between the actual delivered demands and the targets. The PDEs (40b)-(40d) are transport equations that describe flow, pressure, and temperature variations inside the pipelines comprising the network. These equations also capture the dynamic response of the gas stored inside the pipelines when gas is added/withdrawn at network nodes. The boundary conditions and the network constraints (40f)-(40i) couple the pipelines. The constraint (40j) is used to compute the power consumed by each compressor station and the constraints (40l) bound the discharge and suction pressures at network nodes. The constraint (40k) enforces periodicity in the average flow of the system. Constraint (40m) are the so-called non-anticipativity constraints that require the compressor policies to be the same for each scenario. For more details in the problem formulation the reader is referred to [42]. We discretize the PDEs in space and time using finite differences and implicit Euler schemes, respectively. After discretization, we obtain an NLP of the form (33) with 128 scenarios and that contains a total of 1,024,651 variables and 1,023,104 constraints. We refer to this problem instance as STOCH GAS. The security-constrained optimal power flow (SCOPF) problem has the form shown in (41). The SCOPF problem seeks to minimize the power generation cost under a base condition (zero scenario) while guaranteeing that the operation of the network is feasible under predetermined contingencies caused by the loss of different transmission lines. Here, Ω is the set of contingencies (scenarios) and each contingency ω ∈ Ω gives rise to a different network topology (reflected in the sets of links Lω ). The voltage angle differences between nodes i and j are defined as δω,ij := δω,i − δω,j . Constraints (41b)-(41e) are derived from Kirchhoff’s laws, which establish the conservation of energy in the power network. Constraints (41b) and (41c) assert that the sum of incoming power flows and power generation at any particular node (bus) must be equal to the sum of outgoing power flow and power consumption. Constraints (41d) and (41e) are power balances at each node. Constraint (41f) forces the phase angle at a reference bus b0 to be zero. Constraints (41g)-(41j) are physical limits of the system. Constraints (41l)-(41k) are nonanticipativity constraints and state that the voltage level and real power generation at the PV buses (control buses) should remain at their base condition. The only correction action after a failure occurs in the real power generation at the reference bus, which is used to refill the power transmission loss occurring in each contingency. We use the IEEE 300 bus system with 239 contingencies as case study (we refer to the resulting problem as IEEE 300). This gives a structured NLP of the form (1) with 878,650 variables and 734,406 constraints. The gas and power flow instances are accessible at http://zavalab.engr.wisc.edu/data/testinertia. All parallel numerical tests were performed on the Fusion computing cluster at Argonne National Laboratory. Fusion contains 320 computing nodes, and each node has two quad-core Nehalem 2.6 GHz CPUs. The results are presented in Table 2. Here, #MPI denotes the number of MPI processes used for parallelization. All strategies converge to the same objective values; consequently, we report only one value. For these problem instances we have used parameter values αt = 10−10 , αd = 10−10 (scaled by µ) because the default values of 10−12 resulted in high variability in the number of iterations for STOCH GAS. We have observed that increasing αt , αd enhances efficiency. As expected, however, this comes at the expense of additional regularizations. 20 Nai-Yuan Chiang, Victor M. Zavala Z min E 0 T X α`P Pω,` (τ ) + X 2 dω,j (τ ) − dtarget (τ ) dτ ω,j αjd (40a) j∈D `∈La s.t. ∂pω,` (x, τ ) ZRTω,` (x, τ ) ∂fω,` (x, τ ) + = 0, ` ∈ L, ω ∈ Ω, x ∈ X` , τ ∈ T (40b) ∂τ A` ∂x 1 ∂fω,` (x, τ ) ∂pω,` (x, τ ) 8λ` fω,` (x, τ )|fω,` (x, τ )| + + 2 5 = 0, ` ∈ L, ω ∈ Ω, x ∈ X` , τ ∈ T A` ∂τ ∂x π D` ρω,` (x, τ ) (40c) ∂Tω,` (x, τ ) ∂Tω,` (x, τ ) + νω,` (x, τ ) ρω,` (x, τ ) cp ∂τ ∂x ∂pω,` (x, τ ) ∂pω,` (x, τ ) − + νω,` (x, τ ) ∂τ ∂x πD` U` + Tω,` (x, τ ) − Tωamb (x, τ ) = 0, ` ∈ L, ω ∈ Ω, x ∈ X` , τ ∈ T (40d) A` pω,` (x, τ ) = ZRTω,` (x, τ ), ` ∈ L, ω ∈ Ω, x ∈ X` , τ ∈ T (40e) ρω,` (x, τ ) pω,` (L` , τ ) = θω,rec(`) (τ ), ` ∈ L, ω ∈ Ω, τ ∈ T (40f) pω,` (0, τ ) = θω,snd(`) (τ ), ` ∈ Lp , ω ∈ Ω, τ ∈ T (40g) pω,` (0, τ ) = θω,snd(`) (τ ) + ∆θω,` (τ ), ` ∈ La , ω ∈ Ω, τ ∈ T X X fω,` (L` , τ ) − fω,` (0, τ ) (40h) `∈Lrec n `∈Lsnd n + X i∈Sn Pω,` (τ ) = cp · T · fω,` (0, τ ) Z L` Z fω,` (x, T )dx ≥ 0 X sω,i (τ ) − dω,j (τ ) = 0, n ∈ N , ω ∈ Ω, τ ∈ T (40i) j∈Dn θω,snd(`) (τ ) + ∆θω,` (τ ) θω,snd(`) (τ ) γ−1 γ ! − 1 , ` ∈ La , ω ∈ Ω, τ ∈ T (40j) L` fω,` (x, 0)dx, ` ∈ La , ω ∈ Ω, τ ∈ T (40k) 0 θn ≤ θω,n (τ ) ≤ θn , n ∈ N , ω ∈ Ω, τ ∈ T ∆θω,` (τ ) = ∆θ0,` (τ ), ` ∈ La , ω ∈ Ω \ {0}, τ ∈ [0, Td ]. (40l) (40m) We can see that, despite the high nonlinearity of the large-scale instances, the inertia-free approaches IFRd and IFRt converge in all instances. This provides evidence that the tests can scale to large-scale instances. In general, IFRd and IFRt require more iterations than IBR does but the number of factorizations is reduced, resulting in faster solutions. These problem instances are highly ill-conditioned, particularly STOCH GAS as is evident from the variability of the number of iterations as we increase the number of MPI processes. This is the result of linear system errors introduced by Schur decomposition. The performance, however, is satisfactory in all cases. For IEEE 300 we note that the number of iterations for IBR does not vary as we add MPI processors whereas those of IFRd and IFRt do. While it is difficult to isolate a specific source of An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 21 Table 2 Performance of inertia-based and inertia-free strategies on large-scale instances. Problem IEEE 300 IEEE 300 IEEE 300 IEEE 300 IEEE 300 IEEE 300 STOCH GAS STOCH GAS STOCH GAS STOCH GAS STOCH GAS #MPI 16 24 40 80 120 240 8 16 32 64 128 Obj 1.36E+03 1.36E+03 1.36E+03 1.36E+03 1.36E+03 1.36E+03 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 IBR Iter Fact 112 274 112 274 112 274 112 274 112 274 113 274 153 278 136 251 146 274 157 286 145 275 Time(s) 627 424 263 174 126 65 832 363 209 123 64 Iter 173 208 160 183 192 170 122 245 211 112 127 IFRd Fact Time(s) 190 476 238 403 169 181 203 119 224 91 185 47 144 621 277 789 250 301 137 74 158 52 Iter 209 232 168 177 201 219 93 109 99 101 109 IFRt Fact Time(s) 241 651 255 475 178 206 190 127 227 103 240 80 106 491 122 315 112 143 114 79 125 52 such behavior, we attribute this behavior to the stabilizing effect that additional regularizations of IBR provide on the linear system. min X (c0g + c1g pbase,g + c2g p2base,g ) (41a) X (41b) g∈G s.t. X pω,g − dP b = g|og =b X P fω,(i,j) , b ∈ B, ω ∈ Ω (i,j)∈Lω qω,g − dQ b = g|og =b P fω,(i,j) X Q fω,(i,j) − (i,j)∈Lω (Vb )2 2 X γ(i,j) , b ∈ B, ω ∈ Ω (41c) (i,j)∈Lω 2 αl Vω,i − Vω,i Vω,j [αl cos(δω,ij ) + βl sin(δω,ij )], 2 Vω,i Vω,i Vω,j − [αt cos(δω,ij ) + βt sin(δω,ij )], = αl τt τt Vω,i Vω,j 2 αl Vω,i − [αt cos(δω,ij ) + βt sin(δω,ij )], τt otherwise i tapped , (i, j) ∈ Lω , ω ∈ Ω j tapped (41d) Q fω,(i,j) 2 −βl Vω,i − Vω,i Vω,j [αl sin(δω,ij ) − βl cos(δω,ij )], 2 Vω,i Vω,j Vω,i − [αl sin(δω,ij ) − βl cos(δω,ij )], = −βl τ τt t Vω,i Vω,j 2 −βl Vω,i − [αl sin(δω,ij ) − βl cos(δω,ij )], τt otherwise i tapped , (i, j) ∈ Lω , ω ∈ Ω j tapped (41e) δω,b0 = 0, ω ∈ Ω 2 2 Q + P (fω,(i,j) ) + (fω,(i,j) ) ≤ (fω,(i,j) ) , + p− ω,g ≤ pω,g ≤ pω,g , g ∈ G, ω ∈ Ω − + qω,g ≤ qω,g ≤ qω,g , g ∈ G, ω ∈ Ω − + Vω,b ≤ Vω,b ≤ Vω,b , b ∈ B, ω ∈ Ω 2 (41f) (i, j) ∈ L, ω ∈ Ω (41g) (41h) (41i) (41j) Vω,b = Vbase,b , b ∈ BPV , ω ∈ Ω \ {base} (41k) pω,g = pbase,g , g ∈ {g|og ∈ BPV \ {b0 }}. (41l) 22 Nai-Yuan Chiang, Victor M. Zavala 6 Conclusions We have presented a new filter line-search algorithm that does not require inertia information. This inertia-free approach performs curvature tests along computed directions to guarantee descent when the constraint violation is sufficiently small. We proved that the approach yields global convergence and is competitive with the standard inertia-based strategy based on symmetric indefinite factorizations. Moreover, we demonstrate that the inertia-free approach can significantly reduce the amount of regularization needed. The availability of inertia-free strategies opens the possibility of using different types of linear algebra strategies and libraries and thus can enhance modularity of implementations. This was demonstrated through a distributedmemory Schur decomposition setting. Acknowledgments This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract No. DE-AC02-06CH11357. We thank Frank Curtis and Jorge Nocedal for technical discussions. Victor M. Zavala acknowledges funding from the DOE Office of Science under the Early Career program. We also acknowledge the computing resources provided by the Laboratory Computing Resource Center at Argonne National Laboratory. References 1. E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects. In Journal of Physics: Conference Series, volume 180, page 012037. IOP Publishing, 2009. 2. P. R. Amestoy, A. Guermouche, J.Y. LExcellent, and S. Pralet. Hybrid scheduling for the parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006. 3. Nikhil Arora and Lorenz T Biegler. A trust region sqp algorithm for equality constrained parameter estimation with simple parameter bounds. Computational Optimization and Applications, 28(1):51–86, 2004. 4. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith, and H. Zhang. PETSc users manual revision 3.4, 2013. 5. M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005. 6. L.T. Biegler and V.M. Zavala. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. Computers & Chemical Engineering, 33(3):575–582, 2009. 7. G. Biros and O. Ghattas. Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov–Schur solver. SIAM Journal on Scientific Computing, 27(2):687–713, 2005. 8. A. Borzı̀ and V. Schulz. Multigrid methods for pde optimization. SIAM Review, 51(2):361–395, 2009. 9. J.R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric linear systems. Mathematics of computation, pages 163–179, 1977. 10. R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust-region method based on interior-point techniques for nonlinear programming. Math. Programm., 89:149–185, 2000. 11. R.H. Byrd, F.E. Curtis, and J. Nocedal. An inexact Newton method for nonconvex equality constrained optimization. Mathematical rogramming, volume=122, number=2, pages=273–299, year=2010, publisher=Springer. 12. A.M. Cervantes, A. Wächter, R.H. Tütüncü, and L.T. Biegler. A reduced space interior point strategy for optimization of differential algebraic systems. Computers & Chemical Engineering, 24(1):39–51, 2000. 13. N. Chiang and A. Grothey. Solving security constrained optimal power flow problems by a structure exploiting interior point method. Optimization and Engineering, pages 1–23, 2012. 14. N. Chiang, C.G. Petra, and V.M. Zavala. Structured nonconvex optimization of large-scale energy systems using PIPS-NLP. In Proceedings of the 18th Power Systems Computation Conference (PSCC), Wroclaw, Poland, 2014. 15. Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region methods, volume 1. Siam, 2000. An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 23 16. M.P. Costa and E.M.G.P Fernandes. Assessing the potential of interior point barrier filter line search methods: nonmonotone versus monotone approach. Optimization, 60(10-11):1251–1268, 2011. 17. F.E. Curtis, J. Nocedal, and A. Wächter. A matrix-free algorithm for equality constrained optimization problems with rank-deficient Jacobians. SIAM Journal on Optimization, 20(3):1224–1249, 2009. 18. F.E. Curtis, O. Schenk, and A. Wächter. An interior-point algorithm for large-scale nonlinear optimization with inexact step computations. SIAM Journal on Scientific Computing, 32(6):3447–3475, 2010. 19. E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2):201–213, 2002. 20. I. S. Duff. Ma57 - a code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions on Mathematical Software, 30:118–144, 2004. 21. I.S. Duff and J.K. Reid. MA27-a set of Fortran subroutines for solving sparse symmetric sets of linear equations. UKAEA Atomic Energy Research Establishment, 1982. 22. J. Gondzio and R. Sarkissian. Parallel interior-point solver for structured linear programs. Mathematical Programming, 96(3):561–584, 2003. 23. Nicholas IM Gould, Mary E Hribar, and Jorge Nocedal. On the solution of equality constrained quadratic programming problems arising in optimization. SIAM Journal on Scientific Computing, 23(4):1376–1395, 2001. 24. Nicholas IM Gould, Stefano Lucidi, Massimo Roma, and Philippe L Toint. Solving the trust-region subproblem using the lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999. 25. N.I.M. Gould. On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem. Mathematical Programming, 32(1):90–99, 1985. 26. N. Haverbeke, M. Diehl, and B. De Moor. A structure exploiting interior-point method for moving horizon estimation. In Proceedings of the 48th IEEE Conference on Decision and Control, pages 1273–1278. IEEE, 2009. 27. E.V. Haynsworth. Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra and Its Applications, 1(1):73 – 81, 1968. 28. Matthias Heinkenschloss and Denis Ridzal. A matrix-free trust-region sqp method for equality constrained optimization. SIAM Journal on Optimization, 24(3):1507–1541, 2014. 29. Michael Allen Heroux and James M Willenbring. Trilinos users guide. Citeseer, 2003. 30. Y. Kawajiri and L.T. Biegler. Optimization strategies for simulated moving bed and powerfeed processes. AIChE Journal, 52(4):1343–1350, 2006. 31. M. Lubin, C.G. Petra, and M. Anitescu. The parallel solution of dense saddle-point linear systems arising in stochastic programming. Optimization Methods and Software, 27(4-5):845–864, 2012. 32. M. Lubin, C.G. Petra, M. Anitescu, and V.M. Zavala. Scalable stochastic optimization of complex energy systems. In High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference for, pages 1–10. IEEE, 2011. 33. C.G. Petra, O. Schenk, M. Lubin, and K. Gaertner. An augmented incomplete factorization approach for computing the schur complement in stochastic optimization. SIAM Journal on Scientific Computing, 36(2):C139–C162, 2014. 34. C.V. Rao, S.J. Wright, and J.B. Rawlings. Application of interior-point methods to model predictive control. Journal of optimization theory and applications, 99(3):723–757, 1998. 35. O. Schenk, A. Wächter, and M. Hagemann. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Computational Optimization and Applications, 36:321–341, 2007. 36. O. Schenk, A. Wächter, and M. Weiser. Inertia-revealing preconditioning for large-scale nonconvex constrained optimization. SIAM Journal on Scientific Computing, 31(2):939–960, 2008. 37. M. Soler, A. Olivares, and E. Staffetti. Hybrid optimal control approach to commercial aircraft trajectory planning. Journal of Guidance, Control, and Dynamics, 33(3):985–991, 2010. 38. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57, 2006. 39. A. Wächter and L.T. Biegler. Line search filter methods for nonlinear programming: Motivation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005. 40. Richard A Waltz, José Luis Morales, Jorge Nocedal, and Dominique Orban. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3):391–408, 2006. 41. Y. Wang and S. Boyd. Fast model predictive control using online optimization. EEE Transactions on Control Systems Technology, 18(2):267–278, 2010. 42. V.M. Zavala. Stochastic optimal control model for natural gas networks. Computers & Chemical Engineering, 64:103–113, 2014. 43. V.M. Zavala and L.T. Biegler. Large-scale parameter estimation in low-density polyethylene tubular reactors. Industrial & Engineering Chemistry Research, 45(23):7867–7881, 2006. 44. V.M. Zavala, C.D. Laird, and L.T. Biegler. Interior-point decomposition approaches for parallel solution of largescale nonlinear parameter estimation problems. Chemical Engineering Science, 63(19):4834–4845, 2008. 45. S. Zenios and R. Lasken. Nonlinear network optimization on a massively parallel connection machine. Annals of Operations Research, 14(1):147–165, 1988. 24 Nai-Yuan Chiang, Victor M. Zavala Appendix Table A1: Performance of inertia-based and inertia-free strategies on small-scale instances. Problem 3pk aircrfta aircrftb airport aljazzaf allinitc allinit allinitu alsotame arglina arglinb arglinc argtrig arwhead aug2dcqp aug2dc aug2dqp aug2d aug3dcqp aug3dc aug3dqp aug3d avgasa avgasb avion2 bard bdexp bdqrtic bdvalue beale biggs3 biggs5 biggs6 biggsb1 biggsc4 blockqp1 blockqp2 blockqp3 blockqp4 blockqp5 bloweya bloweyb bloweyc booth box2 box3 bqp1var bqpgabim bqpgasim brainpc2 brainpc7 brainpc9 bratu1d bratu2dt bratu2d bratu3d brkmcc brownal brownbs brownden broydn3d broydn7d broydnbd brybnd bt10 bt11 bt12 bt13 bt1 bt2 bt3 bt4 bt5 bt6 bt7 bt8 bt9 byrdsphr camel6 cantilvr catenary catena cb2 cb3 cbratu2d cbratu3d chaconn1 chaconn2 chainwoo n 30 5 8 84 3 4 4 4 2 100 10 8 100 5000 20200 20200 20192 20192 3873 3873 3873 3873 8 8 49 3 5000 1000 5000 2 6 6 6 1000 4 2005 2005 2005 2005 2005 2002 2002 2002 2 3 3 1 50 50 13805 6905 6905 1001 4900 4900 3375 450 10 2 4 10000 1000 5000 5000 2 5 5 5 2 3 5 3 3 5 5 5 4 3 2 5 496 32 3 3 882 1024 3 3 1000 Obj 1.7E+00 0.00E+00 3.34E-27 4.80E+04 7.50E+01 3.05E+01 1.67E+01 5.74E+00 8.21E-02 1.00E+02 4.63E+00 6.14E+00 0.00E+00 -2.66E-15 6.50E+06 1.82E+06 6.24E+06 1.69E+06 9.93E+02 7.71E+02 6.75E+02 5.54E+02 -4.41E+00 -4.48E+00 9.47E+07 8.21E-03 2.41E-04 3.98E+03 0.00E+00 4.34E-18 9.99E-14 1.08E-19 8.91E-15 1.52E-02 -2.45E+01 -9.96E+02 -9.96E+02 -4.97E+02 -4.98E+02 -4.97E+02 -4.55E-02 -3.05E-02 -3.04E-02 0.00E+00 7.34E-15 2.87E-14 8.10E-08 -3.53E-05 -5.25E-05 4.37E-04 3.87E-04 4.48E-04 -8.52E+00 0.00E+00 0.00E+00 0.00E+00 1.69E-01 1.50E-16 0.00E+00 8.58E+04 0.00E+00 3.45E+02 0.00E+00 1.22E-26 -1.00E+00 8.25E-01 6.19E+00 8.09E-08 -1.00E+00 3.26E-02 4.09E+00 -4.55E+01 9.62E+02 2.77E-01 1.00E+00 -1.00E+00 -4.68E+00 -2.15E-01 1.34E+00 -3.48E+05 -2.31E+04 1.95E+00 2.00E+00 0.00E+00 0.00E+00 1.95E+00 2.00E+00 7.93E+01 IBR Iter 10 3 12 15 34 28 11 13 8 1 2 2 3 6 27 12 26 1 17 1 18 2 9 11 40 7 12 10 0 8 8 20 33 13 23 10 9 12 9 42 8 6 10 1 7 8 5 12 12 68 22 20 5 6 2 3 3 7 8 8 4 84 5 8 6 7 4 22 7 12 1 9 7 13 27 23 22 11 13 57 20 9 9 1 1 7 7 99 Reg 0 0 10 0 5 4 0 15 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 45 5 0 0 0 5 5 19 26 0 11 0 0 0 0 47 0 0 0 0 4 2 0 0 0 83 25 23 0 0 0 0 0 0 4 0 0 120 0 0 0 0 0 0 14 0 0 5 3 0 57 8 9 9 0 46 11 0 0 0 0 0 0 97 time 0.09 0.04 0.04 0.06 0.07 0.07 0.07 0.07 0.06 0.11 0.04 0.04 0.06 0.12 1.3 0.72 1.18 0.22 0.18 0.06 0.17 0.34 0.05 0.05 0.05 0.04 0.24 0.07 0.06 0.04 0.06 0.05 0.06 0.08 0.05 0.14 0.12 0.14 0.12 0.3 0.1 0.1 0.11 0.05 0.04 0.05 0.06 0.06 0.06 170.84 1.37 1.26 0.06 0.9 0.45 4.15 0.04 0.04 0.04 0.05 0.22 0.28 0.25 0.3 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.18 0.06 0.05 0.06 0.1 0.15 0.06 0.05 0.22 Obj 1.72E+00 0.00E+00 1.22E-19 4.80E+04 7.50E+01 3.05E+01 1.67E+01 5.74E+00 8.21E-02 1.00E+02 4.63E+00 6.14E+00 0.00E+00 -2.66E-15 6.50E+06 1.82E+06 6.24E+06 1.69E+06 9.93E+02 7.71E+02 6.75E+02 5.54E+02 -4.41E+00 -4.48E+00 9.47E+07 8.21E-03 2.41E-04 3.98E+03 0.00E+00 4.34E-18 9.99E-14 3.06E-01 3.06E-01 1.52E-02 -2.45E+01 -9.96E+02 -9.96E+02 -4.97E+02 -4.98E+02 -4.97E+02 -4.55E-02 -3.05E-02 -3.04E-02 0.00E+00 7.88E-13 7.03E-14 8.10E-08 -3.53E-05 -5.25E-05 -8.52E+00 0.00E+00 0.00E+00 0.00E+00 1.69E-01 1.50E-16 0.00E+00 8.58E+04 0.00E+00 5.73E+02 0.00E+00 1.22E-26 -1.00E+00 8.25E-01 6.19E+00 8.09E-08 -1.00E+00 3.26E-02 4.09E+00 -4.55E+01 9.62E+02 2.77E-01 3.07E+02 1.00E+00 -1.00E+00 -4.68E+00 2.23E+00 1.34E+00 -3.48E+05 -1.85E+04 1.95E+00 2.00E+00 0.00E+00 0.00E+00 1.95E+00 2.00E+00 5.26E+02 IFRd Iter Reg 10 0 3 2 18 5 15 0 33 13 26 5 11 5 8 6 8 0 1 0 1 0 1 0 3 2 6 0 27 0 12 0 26 0 1 0 17 0 1 0 18 0 2 0 9 0 11 0 59 10 8 0 12 0 10 0 0 0 8 5 8 5 19 3 18 0 13 0 22 8 10 0 9 0 12 0 9 0 15 0 8 0 6 0 10 0 2 2 11 5 7 0 5 0 12 0 12 0 5 0 6 1 2 1 3 1 3 0 7 0 8 4 8 0 4 1 49 16 5 1 8 0 6 1 7 0 4 0 22 0 7 14 12 0 1 0 9 5 9 8 13 0 37 1 11 0 20 0 22 9 7 0 13 0 47 0 32 11 9 0 9 0 2 1 1 1 7 0 7 0 113 7 time 0.08 0.05 0.04 0.05 0.05 0.04 0.05 0.07 0.08 0.12 0.07 0.05 0.07 0.11 1.2 0.72 1.21 0.21 0.19 0.06 0.17 0.36 0.04 0.05 0.05 0.05 0.24 0.09 0.13 0.05 0.05 0.05 0.05 0.08 0.05 0.14 0.12 0.13 0.12 0.12 0.1 0.09 0.1 0.04 0.05 0.04 0.04 0.05 0.04 0.06 1.66 0.78 7.32 0.05 0.04 0.04 0.04 0.2 0.17 0.24 0.28 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.14 0.07 0.04 0.04 0.1 0.17 0.04 0.04 0.18 Obj 1.72E+00 0.00E+00 1.22E-19 4.80E+04 3.05E+01 1.67E+01 5.74E+00 8.21E-02 1.00E+02 4.63E+00 6.14E+00 0.00E+00 -2.66E-15 6.50E+06 1.82E+06 6.24E+06 1.69E+06 9.93E+02 7.71E+02 6.75E+02 5.54E+02 -4.41E+00 -4.48E+00 8.21E-03 2.41E-04 3.98E+03 0.00E+00 4.34E-18 9.99E-14 3.06E-01 3.06E-01 1.52E-02 -2.45E+01 -9.96E+02 -9.96E+02 -4.97E+02 -4.98E+02 -4.97E+02 -4.55E-02 -3.05E-02 -3.04E-02 0.00E+00 7.88E-13 7.03E-14 8.10E-08 -3.53E-05 -5.25E-05 -8.52E+00 0.00E+00 0.00E+00 0.00E+00 1.69E-01 1.50E-16 0.00E+00 8.58E+04 0.00E+00 5.63E+02 0.00E+00 1.22E-26 -1.00E+00 8.25E-01 6.19E+00 8.09E-08 -1.00E+00 3.26E-02 4.09E+00 -4.55E+01 9.62E+02 2.77E-01 1.00E+00 -1.00E+00 -4.68E+00 2.23E+00 1.34E+00 -3.48E+05 -2.31E+04 1.95E+00 2.00E+00 0.00E+00 0.00E+00 1.95E+00 2.00E+00 4.30E+02 IFRt Iter Reg 10 0 3 0 18 5 15 0 30 0 11 0 8 6 8 0 1 0 1 0 1 0 3 0 6 0 27 0 12 0 26 0 1 0 17 0 1 0 18 0 2 0 9 0 11 0 8 0 12 0 10 0 0 0 8 5 8 5 19 3 18 0 13 0 22 8 10 0 9 0 12 0 9 0 15 0 8 0 6 0 10 0 1 0 11 5 7 0 5 0 12 0 12 0 9 7 6 0 2 0 3 0 3 0 7 0 8 4 8 0 4 0 53 19 5 0 8 0 6 0 7 0 4 0 22 0 6 0 12 0 1 0 9 5 7 3 13 0 11 0 20 0 22 9 7 0 13 0 47 0 30 12 9 0 9 0 1 0 1 0 7 0 7 0 114 6 time 0.09 0.05 0.04 0.06 0.06 0.05 0.06 0.05 0.11 0.04 0.05 0.07 0.13 1.19 0.76 1.14 0.23 0.19 0.07 0.18 0.35 0.06 0.05 0.05 0.26 0.07 0.06 0.04 0.06 0.05 0.04 0.07 0.04 0.13 0.11 0.2 0.13 0.14 0.09 0.09 0.1 0.04 0.04 0.04 0.07 0.07 0.07 0.07 1 0.42 5.64 0.08 0.08 0.08 0.08 0.31 0.31 0.32 0.39 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.2 0.09 0.08 0.06 0.15 0.23 0.08 0.08 0.32 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming chandheq chebyqad chemrcta chenhark chnrosnb cliff clnlbeam clplatea clplateb clplatec cluster concon congigmz coolhans coshfun core2 cosine cragglvy csfi1 csfi2 cube curly10 curly20 curly30 cvxbqp1 cvxqp1 cvxqp2 cvxqp3 deconvb deconvc deconvu degenlpa degenlpb demymalo denschna denschnb denschnc denschnd denschne denschnf dipigri dittert dixchlng dixchlnv dixmaana dixmaanb dixmaanc dixmaand dixmaane dixmaanf dixmaang dixmaanh dixmaani dixmaanj dixmaank dixmaanl dixon3dq djtl dnieper dqdrtic drcavty1 drcavty2 drcavty3 dtoc1l dtoc1na dtoc1nb dtoc1nc dtoc1nd dtoc2 dtoc3 dtoc4 dtoc5 dtoc6 dual1 dual2 dual3 dual4 dualc1 dualc2 dualc5 dualc8 edensch eg1 eg2 eg3 eigena2 eigenaco eigenals eigena eigenb2 eigenbco eigenbls eigenb eigenc2 eigencco eigmaxb eigmaxc 100 50 5000 1000 50 2 1499 4970 4970 4970 2 15 3 9 61 157 10000 5000 5 5 2 10000 10000 10000 10000 1000 10000 10000 51 51 51 20 20 3 2 2 2 3 3 2 7 327 10 100 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 10 2 61 5000 10816 10816 10816 14985 1485 1485 1485 735 5994 14997 14997 9998 10000 85 96 111 75 9 7 8 8 2000 3 1000 101 110 110 110 110 110 110 110 110 462 30 101 22 0.00E+00 5.39E-03 -2.00E+00 1.82E-26 2.00E-01 3.45E+02 -1.26E-02 -6.99E+00 -5.02E-03 0.00E+00 -6.23E+03 2.80E+01 0.00E+00 -7.73E-01 -1.00E+04 1.69E+03 -4.91E+01 1.75E-24 -1.00E+06 -1.00E+06 -1.00E+06 2.25E+06 1.09E+06 8.18E+07 1.16E+08 2.57E-03 1.06E-10 3.05E+00 -3.08E+01 -3.00E+00 1.10E-23 9.99E-16 2.18E-20 2.00E-10 2.74E-23 6.51E-22 6.81E+02 -2.00E+00 2.47E+03 0.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.71E-30 -8.95E+03 1.87E+04 1.98E-25 3.01E-11 1.06E-05 2.09E-04 1.25E+02 1.27E+01 1.59E+01 2.50E+01 1.26E+01 5.09E-01 2.35E+02 2.87E+00 1.54E+00 1.35E+05 3.50E-02 3.37E-02 1.36E-01 7.46E-01 6.16E+03 3.55E+03 4.27E+02 1.83E+04 1.20E+04 -1.43E+00 -9.99E+02 1.28E-10 3.61E-30 7.89E-31 2.53E-24 4.74E-06 1.80E+01 1.05E-15 5.73E-20 6.19E-15 5.42E-25 5.76E-21 -9.67E-04 -1.00E+00 11 101 14 43 27 208 5 5 1 8 9 25 8 190 12 14 14 27 21 26 29 9 38 116 54 103 41 28 31 17 6 6 10 36 10 6 12 22 9 18 7 11 8 9 10 19 16 21 18 20 24 28 1 20 29 1 137 765 198 6 6 5 17 22 10 1 3 3 11 13 11 10 10 30 21 12 16 7 7 3 17 2 3 25 25 2 77 109 110 20 12 11 8 0 144 0 3 0 150 0 0 0 0 0 5 0 243 17 0 4 0 25 30 36 0 0 0 0 56 58 0 0 3 0 0 0 14 10 0 0 28 0 0 6 10 7 8 10 20 17 25 17 23 28 36 0 7 6 0 185 301 302 0 0 0 13 18 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 0 4 24 6 0 87 91 87 22 11 0 0 0.14 3.96 0.07 0.05 0.05 1.05 0.19 0.17 0.11 0.05 0.08 0.08 0.07 0.1 0.35 0.22 0.05 0.06 1.13 2.18 3.66 0.56 0.85 128.81 351.97 0.11 0.09 0.08 0.07 0.05 0.04 0.05 0.05 0.08 0.08 0.08 0.08 0.23 0.05 0.09 0.09 0.16 0.13 0.15 0.1 0.23 0.2 0.25 0.13 0.24 0.29 0.32 0.04 0.04 0.05 0.1 78.84 293.87 121.66 0.36 0.27 0.26 0.59 0.35 0.49 0.2 0.36 0.14 0.28 0.07 0.07 0.09 0.06 0.07 0.07 0.07 0.09 0.08 0.05 0.07 0.06 0.05 0.05 0.11 0.09 0.05 0.33 0.41 0.26 1.27 0.06 0.06 0.06 0.00E+00 4.03E-01 -2.00E+00 1.82E-26 2.00E-01 3.47E+02 -1.26E-02 -6.99E+00 -5.02E-03 0.00E+00 -6.23E+03 2.80E+01 0.00E+00 7.29E+01 -1.35E+02 1.69E+03 -4.91E+01 1.75E-24 -1.00E+06 -1.00E+06 -9.98E+05 2.25E+06 1.09E+06 8.18E+07 1.16E+08 1.94E-03 3.35E+01 5.20E-05 3.05E+00 -3.08E+01 -3.00E+00 1.10E-23 9.99E-16 2.18E-20 1.70E-10 1.00E+00 6.51E-22 6.81E+02 -2.00E+00 2.47E+03 0.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.71E-30 -8.95E+03 1.87E+04 1.98E-25 1.25E+02 1.27E+01 1.59E+01 2.50E+01 1.27E+01 5.13E-01 2.35E+02 2.87E+00 1.54E+00 1.35E+05 3.50E-02 3.37E-02 1.36E-01 7.46E-01 6.16E+03 3.55E+03 4.27E+02 1.83E+04 1.20E+04 -1.43E+00 -9.99E+02 6.89E-02 3.61E-30 7.89E-31 1.00E+01 4.70E-06 1.80E+01 9.00E+00 6.69E-02 6.69E-02 5.36E+00 4.80E-21 -9.67E-04 -1.00E+00 11 72 14 43 27 92 5 5 1 8 9 30 9 76 18 14 18 27 18 22 28 9 38 116 54 432 21 213 28 31 9 6 6 10 35 9 6 12 23 9 18 5 7 168 195 137 159 155 168 212 111 111 161 1 20 30 1 6 6 5 8 57 6 1 3 3 11 13 11 10 10 30 21 12 16 7 7 3 25 2 2 18 25 2 2 41 42 96 9 11 8 0 49 0 3 0 54 0 0 0 0 0 10 2 12 18 0 9 0 20 24 27 0 0 0 0 30 6 6 0 0 1 0 0 0 4 1 0 0 0 0 0 0 0 16 26 9 25 15 19 23 4 7 19 0 7 0 0 0 0 0 3 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 0 0 9 9 70 3 6 3 0.12 2.47 0.07 0.05 0.05 0.58 0.15 0.15 0.1 0.04 0.04 0.04 0.04 0.08 0.47 0.19 0.05 0.04 0.95 1.9 3.38 0.53 0.8 123.7 371.79 0.18 0.06 0.13 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.22 0.08 0.12 0.12 0.18 2.43 3.1 1.26 2.64 2.56 2.42 1.67 1.67 1.58 2.11 0.07 0.07 0.08 0.11 0.35 0.26 0.22 0.31 0.77 0.25 0.19 0.34 0.14 0.27 0.07 0.08 0.1 0.07 0.08 0.06 0.06 0.08 0.08 0.05 0.05 0.06 0.05 0.05 0.1 0.08 0.06 0.06 0.18 0.12 5.37 0.04 0.05 0.05 25 0.00E+00 6.27E-01 0.00E+00 -2.00E+00 1.82E-26 2.00E-01 3.46E+02 -1.26E-02 -6.99E+00 -5.02E-03 0.00E+00 -6.23E+03 2.80E+01 0.00E+00 -2.36E+02 1.69E+03 -4.91E+01 5.50E+01 1.75E-24 -1.00E+06 -1.00E+06 -9.98E+05 2.25E+06 1.09E+06 8.18E+07 1.16E+08 3.35E+01 5.20E-05 3.05E+00 -3.08E+01 -3.00E+00 1.10E-23 9.99E-16 2.18E-20 1.70E-10 1.00E+00 6.51E-22 6.81E+02 -2.00E+00 2.47E+03 0.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 2.71E-30 -8.95E+03 1.87E+04 1.98E-25 1.25E+02 1.27E+01 1.59E+01 2.50E+01 1.24E+01 5.13E-01 2.35E+02 2.87E+00 1.54E+00 1.35E+05 3.50E-02 3.37E-02 1.36E-01 7.46E-01 6.16E+03 3.55E+03 4.27E+02 1.83E+04 1.20E+04 -1.43E+00 -9.99E+02 6.89E-02 3.61E-30 7.89E-31 1.00E+01 4.70E-06 1.80E+01 9.00E+00 6.69E-02 6.69E-02 1.04E+01 4.80E-21 -9.67E-04 -1.00E+00 11 53 6 14 43 27 107 5 5 1 8 9 27 8 19 14 14 40 27 18 22 28 9 38 116 54 21 150 28 31 17 6 6 10 35 9 6 12 23 9 18 5 7 136 195 137 156 198 154 212 87 108 174 1 20 30 1 6 6 5 19 70 6 1 3 3 11 13 11 10 10 30 21 12 16 7 7 3 25 2 2 18 25 2 2 41 42 86 9 11 8 0 23 0 0 3 0 41 0 0 0 0 0 3 0 19 0 1 19 0 20 24 27 0 0 0 0 6 6 0 0 3 0 0 0 4 1 0 0 0 0 0 0 0 23 16 8 15 17 16 23 8 9 18 0 7 0 0 0 0 0 16 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 0 0 9 9 33 3 6 1 0.19 3.14 0.28 0.09 0.08 0.07 0.84 0.24 0.24 0.17 0.07 0.07 0.07 0.07 0.83 0.31 0.09 0.08 0.08 1.55 2.14 3.46 0.53 0.79 135.62 373.3 0.09 0.16 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.06 0.08 0.08 0.23 0.08 0.13 0.12 0.17 2.32 3.25 1.27 2.64 3.29 2.6 2 1.39 1.67 2.12 0.04 0.04 0.04 0.07 0.57 0.36 0.33 0.79 1.42 0.41 0.3 0.55 0.22 0.44 0.11 0.12 0.13 0.1 0.11 0.09 0.09 0.11 0.12 0.07 0.08 0.08 0.05 0.05 0.1 0.08 0.05 0.05 0.18 0.13 4.18 0.05 0.06 0.05 26 Nai-Yuan Chiang, Victor M. Zavala eigminb eigminc engval1 engval2 errinros expfita expfitb expfitc expfit explin2 explin expquad extrasim extrosnb fccu fletcbv2 fletchcr fletcher fminsrf2 fminsurf freuroth gausselm genhs28 genhumps genrose gigomez1 gilbert goffin gottfr gouldqp2 gouldqp3 gpp gridneta gridnetb gridnetc gridnetd gridnete gridnetf gridnetg gridneth gridneti grouping growthls growth gulf hadamals hadamard hager1 hager2 hager3 hager4 haifam haifas hairy haldmads harkerp2 hart6 hatflda hatfldb hatfldc hatfldd hatflde hatfldg hatfldh heart6ls heart6 heart8ls heart8 helix hilberta hilbertb himmelba himmelbb himmelbc himmelbe himmelbf himmelbg himmelbh himmelbi himmelbk himmelp1 himmelp2 himmelp3 himmelp4 himmelp5 himmelp6 hong hs001 hs002 hs003 hs004 hs005 hs006 hs007 hs008 hs009 hs010 101 22 5000 3 50 5 5 5 2 120 120 120 2 10 19 100 100 4 1024 1024 5000 1495 10 5 500 3 1000 51 2 699 699 250 13284 13284 7564 7565 7565 7565 61 61 61 100 3 3 3 100 65 10001 10000 10000 10000 85 7 2 6 300 100 4 4 4 3 3 25 4 6 6 8 8 3 10 50 2 2 2 3 4 2 2 100 24 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 9.67E-04 1.00E+00 5.55E+03 1.71E-17 4.04E+01 1.14E-03 5.02E-03 2.33E-02 2.41E-01 -7.24E+05 -7.24E+05 -3.62E+06 1.00E+00 0.00E+00 1.11E+01 -5.14E-01 2.48E-15 1.00E+00 1.00E+00 6.08E+05 9.27E-01 4.65E-20 1.00E+00 -3.00E+00 4.82E+02 4.54E-06 0.00E+00 1.93E-04 2.07E+00 1.44E+04 3.05E+02 1.43E+02 1.62E+02 5.66E+02 2.07E+02 2.42E+02 7.33E+01 3.96E+01 4.02E+01 1.39E+01 1.00E+00 1.00E+00 2.14E-16 2.53E+01 1.00E+00 8.81E-01 4.32E-01 1.41E-01 2.79E+00 -4.50E+01 -4.50E-01 2.00E+01 3.30E-02 -5.00E-01 -3.32E+00 9.50E-13 5.57E-03 3.88E-15 6.62E-08 4.43E-07 0.00E+00 -2.45E+01 2.11E-21 0.00E+00 1.44E-16 0.00E+00 3.72E-15 4.66E-20 7.51E-28 0.00E+00 1.60E-17 0.00E+00 0.00E+00 3.19E+02 3.63E-22 -1.00E+00 -1.76E+03 5.18E-02 -6.21E+01 -8.20E+00 -5.90E+01 -5.90E+01 -5.90E+01 -5.90E+01 1.35E+00 1.33E-15 4.94E+00 8.09E-08 2.67E+00 -1.91E+00 0.00E+00 -1.73E+00 -1.00E+00 -5.00E-01 -1.00E+00 11 10 8 19 29 34 54 81 8 17 17 21 5 0 1 1 47 29 50 7 1 230 744 16 27 7 5 9 12 18 22 1 24 23 5 24 17 6 13 7 72 71 21 155 6 1 1 1 7 69 28 51 79 15 8 9 10 5 20 25 7 14 828 66 78 13 10 1 1 1 13 5 2 10 6 4 18 18 13 18 13 15 24 8 13 26 11 4 6 8 2 47 5 3 20 0 0 0 13 12 19 26 26 8 0 0 15 0 0 0 0 65 24 26 4 0 343 10 5 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12 11 204 0 0 0 0 0 66 32 65 90 0 5 0 0 0 8 9 0 0 1225 14 109 0 9 0 0 0 16 0 0 7 3 0 0 0 14 15 2 2 5 0 0 0 0 0 0 3 0 49 0 0 0 0.06 0.07 0.14 0.06 0.05 0.05 0.07 0.17 0.06 0.07 0.04 0.06 0.06 0.06 0.05 0.06 0.05 0.2 11.49 0.18 0.04 0.05 0.34 0.04 0.08 0.07 0.05 0.06 0.07 0.35 0.85 0.17 0.52 1 0.43 0.98 0.05 0.05 0.06 0.07 0.05 0.05 0.05 0.37 0.06 0.1 0.5 0.25 0.33 0.13 0.04 0.04 0.06 0.08 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.05 0.08 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.06 9.67E-04 1.00E+00 5.55E+03 1.65E-18 4.04E+01 1.14E-03 5.02E-03 2.33E-02 2.41E-01 -7.24E+05 -7.24E+05 -3.62E+06 1.00E+00 0.00E+00 1.11E+01 -5.14E-01 1.06E-16 1.17E+01 1.00E+00 1.00E+00 6.08E+05 -1.00E+00 9.27E-01 1.25E-20 1.00E+00 -3.00E+00 4.82E+02 4.54E-06 0.00E+00 1.93E-04 2.07E+00 1.44E+04 3.05E+02 1.43E+02 1.62E+02 5.66E+02 2.07E+02 2.42E+02 7.33E+01 3.96E+01 4.02E+01 1.00E+00 1.00E+00 5.01E-22 8.13E+02 1.00E+00 8.81E-01 4.32E-01 1.41E-01 2.79E+00 -4.50E+01 -4.50E-01 2.00E+01 -5.00E-01 -3.32E+00 9.50E-13 5.57E-03 3.88E-15 1.40E+01 1.53E+01 0.00E+00 -2.45E+01 4.98E-21 0.00E+00 4.92E-21 0.00E+00 5.52E-17 4.66E-20 7.51E-28 0.00E+00 4.35E-10 0.00E+00 0.00E+00 3.19E+02 3.63E-22 -1.00E+00 -1.76E+03 5.18E-02 -2.39E+01 -6.21E+01 -5.90E+01 -5.90E+01 -5.90E+01 -5.90E+01 1.35E+00 1.33E-15 4.94E+00 8.09E-08 2.67E+00 -1.91E+00 0.00E+00 -1.73E+00 -1.00E+00 -5.00E-01 -1.00E+00 11 10 8 16 36 34 54 92 11 17 17 31 5 0 1 1 170 19 24 31 7 15 1 86 761 16 27 6 5 9 12 18 22 1 24 23 5 24 17 6 13 70 70 26 11 6 1 1 1 7 138 19 29 15 8 9 10 5 18 18 7 14 232 67 489 13 14 1 1 2 19 5 3 11 6 4 18 18 17 23 13 15 25 8 13 26 11 4 6 8 4 15 5 3 20 8 7 0 0 10 19 26 26 7 0 0 0 0 0 0 0 69 22 0 0 4 0 0 68 31 5 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 13 3 0 0 0 0 0 58 6 29 0 5 0 0 0 0 0 8 0 114 49 242 24 0 0 0 1 0 3 3 2 3 0 0 0 14 19 2 2 6 0 0 0 0 0 0 3 1 5 4 0 0 0.06 0.06 0.13 0.05 0.06 0.05 0.08 0.21 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.07 0.05 0.16 5.37 0.18 0.22 0.04 0.05 0.42 0.06 0.08 0.05 0.04 0.05 0.09 0.36 0.79 0.17 0.44 0.89 0.4 0.88 0.05 0.05 0.05 0.06 0.06 0.06 0.08 0.08 0.11 0.52 0.26 0.33 0.2 0.06 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.06 0.09 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 9.67E-04 1.00E+00 5.55E+03 1.65E-18 4.04E+01 1.14E-03 5.02E-03 2.33E-02 2.41E-01 -7.24E+05 -7.24E+05 -3.62E+06 1.00E+00 0.00E+00 1.11E+01 -5.14E-01 1.48E-16 1.00E+00 1.00E+00 6.08E+05 -1.00E+00 9.27E-01 1.25E-20 1.00E+00 -3.00E+00 4.82E+02 4.54E-06 0.00E+00 1.93E-04 2.07E+00 1.44E+04 3.05E+02 1.43E+02 1.62E+02 5.66E+02 2.07E+02 2.42E+02 7.33E+01 3.96E+01 4.02E+01 1.39E+01 1.00E+00 1.00E+00 5.01E-22 8.13E+02 1.00E+00 8.81E-01 4.32E-01 1.41E-01 2.79E+00 -4.50E+01 -4.50E-01 2.00E+01 1.23E-04 -5.00E-01 -3.32E+00 9.50E-13 5.57E-03 3.88E-15 1.40E+01 1.53E+01 0.00E+00 -2.45E+01 2.21E-25 0.00E+00 6.94E-28 0.00E+00 5.52E-17 4.66E-20 7.51E-28 0.00E+00 4.35E-10 0.00E+00 0.00E+00 3.19E+02 3.63E-22 -1.00E+00 -1.76E+03 5.18E-02 -5.17E+01 -8.20E+00 -5.90E+01 -5.90E+01 -5.90E+01 -5.90E+01 1.35E+00 1.33E-15 4.94E+00 8.09E-08 2.67E+00 -1.91E+00 0.00E+00 -1.73E+00 -1.00E+00 -5.00E-01 -1.00E+00 11 10 8 16 36 34 54 93 11 17 17 31 5 0 1 1 184 24 35 7 15 1 86 761 16 37 6 5 9 12 18 22 1 24 23 5 24 17 6 13 8 71 70 26 11 7 1 1 1 7 89 19 29 283 15 8 9 10 5 18 18 7 14 232 22 498 11 14 1 1 1 19 5 2 11 6 4 18 18 16 26 13 15 24 8 13 26 11 4 6 8 2 47 5 3 20 9 0 0 0 10 19 26 26 7 0 0 0 0 0 0 0 63 0 0 4 0 0 68 31 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 13 3 0 0 0 0 0 35 6 29 101 0 5 0 0 0 0 0 0 0 110 17 237 6 0 0 0 0 0 0 0 2 3 0 0 0 11 24 2 2 5 0 0 0 0 0 0 3 0 49 0 0 0 0.06 0.04 0.11 0.04 0.04 0.04 0.06 0.2 0.04 0.04 0.04 0.04 0.06 0.06 0.07 0.07 0.06 0.15 7.38 0.26 0.35 0.07 0.08 0.65 0.08 0.13 0.08 0.06 0.09 0.11 0.5 1.15 0.25 0.68 1.28 0.59 1.3 0.1 0.08 0.08 0.1 0.07 0.08 0.08 0.11 0.1 0.15 0.82 0.4 0.5 0.24 0.07 0.07 0.17 0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.1 0.08 0.13 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.08 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.06 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming hs011 hs012 hs013 hs014 hs015 hs016 hs017 hs018 hs019 hs020 hs021 hs022 hs023 hs024 hs025 hs026 hs027 hs028 hs029 hs030 hs031 hs032 hs033 hs034 hs035 hs036 hs037 hs038 hs039 hs040 hs041 hs042 hs043 hs044 hs045 hs046 hs047 hs048 hs049 hs050 hs051 hs052 hs053 hs054 hs055 hs056 hs057 hs059 hs060 hs061 hs062 hs063 hs064 hs065 hs066 hs067 hs070 hs071 hs072 hs073 hs074 hs075 hs076 hs077 hs078 hs079 hs080 hs081 hs083 hs084 hs085 hs086 hs087 hs088 hs089 hs090 hs091 hs092 hs095 hs096 hs097 hs098 hs099 hs100lnp hs100mod hs100 hs101 hs102 hs103 hs104 hs105 hs106 hs108 hs109 hs110 hs111lnp hs111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 7 2 2 3 3 3 3 3 3 3 10 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 9 2 3 4 5 6 6 6 6 6 23 7 7 7 7 7 7 8 8 8 9 9 10 10 10 -8.50E+00 -3.00E+01 9.95E-01 1.39E+00 3.06E+02 2.31E+01 1.00E+00 5.00E+00 -6.96E+03 4.02E+01 -1.00E+02 1.00E+00 2.00E+00 -1.00E+00 1.14E-12 1.65E-12 4.93E-32 -2.26E+01 1.00E+00 6.00E+00 1.00E+00 -4.59E+00 -8.34E-01 1.11E-01 -3.30E+03 -3.46E+03 1.91E-19 -1.00E+00 -2.50E-01 1.93E+00 1.39E+01 -4.40E+01 -1.30E+01 1.00E+00 4.08E-12 3.15E-11 1.60E-29 1.38E-09 1.23E-32 2.59E-31 5.33E+00 4.09E+00 1.93E-01 6.67E+00 -3.46E+00 3.06E-02 -7.80E+00 3.26E-02 -1.44E+02 -2.63E+04 9.62E+02 6.30E+03 9.54E-01 5.18E-01 -1.16E+03 9.40E-03 1.70E+01 7.28E+02 2.99E+01 5.13E+03 5.17E+03 -4.68E+00 2.42E-01 -2.92E+00 7.88E-02 5.39E-02 5.39E-02 -3.07E+04 -5.28E+06 -1.91E+00 -3.23E+01 8.83E+03 1.36E+00 1.36E+00 1.36E+00 1.36E+00 1.36E+00 1.56E-02 1.56E-02 4.07E+00 3.14E+00 -8.31E+08 6.81E+02 6.79E+02 6.81E+02 1.81E+03 9.12E+02 5.44E+02 3.95E+00 1.14E+03 7.05E+03 -6.75E-01 5.33E+03 -4.58E+01 -4.78E+01 -4.78E+01 8 11 31 7 15 11 20 12 15 12 9 7 10 12 33 18 1 11 14 7 12 9 9 7 13 11 40 23 4 10 6 9 18 23 18 17 1 16 9 1 1 6 7 7 13 21 75 6 10 8 7 17 10 7 12 23 8 16 8 9 8 7 12 4 4 6 9 15 19 33 10 17 16 13 19 26 19 19 18 19 31 7 16 13 12 65 32 74 9 23 15 27 22 6 22 22 0 0 0 0 10 0 0 0 7 0 0 0 0 8 26 0 0 7 0 0 0 0 0 0 11 9 5 8 0 2 0 0 15 24 0 3 0 0 0 0 0 0 0 0 11 1 45 0 0 0 3 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 3 0 16 0 0 0 4 6 9 26 16 5 5 6 22 0 0 0 0 88 26 42 0 6 0 28 0 0 12 12 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.08 0.04 0.04 0.05 0.04 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.06 0.04 0.04 0.06 0.05 0.07 0.05 0.1 0.04 0.06 0.05 0.04 0.04 0.05 -8.50E+00 -3.00E+01 9.95E-01 1.39E+00 3.06E+02 2.31E+01 1.00E+00 5.00E+00 -6.96E+03 4.02E+01 -1.00E+02 1.00E+00 2.00E+00 -1.00E+00 1.14E-12 1.65E-12 4.00E-02 4.93E-32 -2.26E+01 1.00E+00 6.00E+00 1.00E+00 -4.59E+00 -8.34E-01 1.11E-01 -3.30E+03 -3.46E+03 1.91E-19 -1.00E+00 -2.50E-01 1.93E+00 1.39E+01 -4.40E+01 -3.00E+00 1.00E+00 4.08E-12 3.15E-11 1.60E-29 1.38E-09 1.23E-32 2.59E-31 5.33E+00 4.09E+00 1.93E-01 6.67E+00 -3.46E+00 3.06E-02 -7.80E+00 3.26E-02 -1.44E+02 -2.63E+04 9.62E+02 6.30E+03 9.54E-01 5.18E-01 -1.16E+03 9.40E-03 1.70E+01 7.28E+02 2.99E+01 5.13E+03 5.17E+03 -4.68E+00 2.42E-01 -2.92E+00 7.88E-02 5.39E-02 5.39E-02 -3.07E+04 -5.28E+06 -1.91E+00 -3.23E+01 8.83E+03 1.36E+00 1.36E+00 1.36E+00 1.36E+00 1.36E+00 1.56E-02 1.56E-02 4.07E+00 4.07E+00 -8.31E+08 6.81E+02 6.79E+02 6.81E+02 1.81E+03 9.12E+02 5.44E+02 3.95E+00 1.14E+03 7.05E+03 -6.75E-01 5.33E+03 -4.58E+01 -4.74E+01 -4.75E+01 8 11 33 7 12 11 20 13 18 12 9 7 10 12 36 18 21 1 11 14 7 12 9 9 7 13 11 40 20 5 10 6 9 11 27 18 17 1 16 9 1 1 6 7 7 24 20 18 6 9 8 8 17 10 7 12 54 8 16 8 9 8 7 12 6 4 6 7 15 19 33 10 17 18 30 21 20 16 23 18 21 23 7 16 13 12 24 41 60 9 24 15 15 22 6 27 66 0 0 23 0 8 0 0 3 17 0 0 0 0 8 33 0 1 0 11 0 0 0 3 0 0 11 9 5 0 5 2 0 0 0 24 0 3 0 0 0 0 0 0 0 0 22 5 6 0 10 0 7 0 0 0 0 32 0 0 0 0 0 0 0 5 0 0 4 0 16 2 0 0 3 16 3 5 0 3 5 3 1 0 0 0 0 0 11 6 0 4 0 3 1 0 9 52 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.07 0.06 0.1 0.06 0.05 0.05 0.05 0.05 0.06 27 -8.50E+00 -3.00E+01 9.95E-01 1.39E+00 3.06E+02 2.31E+01 1.00E+00 5.00E+00 -6.96E+03 4.02E+01 -1.00E+02 1.00E+00 2.00E+00 -1.00E+00 1.14E-12 1.65E-12 4.93E-32 -2.26E+01 1.00E+00 6.00E+00 1.00E+00 -4.59E+00 -8.34E-01 1.11E-01 -3.30E+03 -3.46E+03 1.91E-19 -1.00E+00 -2.50E-01 1.93E+00 1.39E+01 -4.40E+01 -3.00E+00 1.00E+00 4.08E-12 3.15E-11 1.60E-29 1.38E-09 2.10E-31 2.59E-31 5.33E+00 4.09E+00 1.93E-01 6.67E+00 -3.46E+00 3.06E-02 -7.80E+00 3.26E-02 -1.44E+02 -2.63E+04 9.62E+02 6.30E+03 9.54E-01 5.18E-01 -1.16E+03 9.40E-03 1.70E+01 7.28E+02 2.99E+01 5.13E+03 5.17E+03 -4.68E+00 2.42E-01 -2.92E+00 7.88E-02 5.39E-02 5.39E-02 -3.07E+04 -5.28E+06 -1.91E+00 -3.23E+01 8.83E+03 1.36E+00 1.36E+00 1.36E+00 1.36E+00 1.36E+00 1.56E-02 1.56E-02 4.07E+00 4.07E+00 -8.31E+08 6.81E+02 6.79E+02 6.81E+02 3.95E+00 1.14E+03 7.05E+03 -6.75E-01 5.33E+03 -4.58E+01 - 8 11 31 7 19 11 20 12 15 12 9 7 10 12 36 18 1 11 14 7 12 9 9 7 13 11 40 20 4 10 6 9 11 27 18 17 1 16 9 1 1 6 7 7 13 20 88 6 5 8 7 17 10 7 12 54 8 16 8 9 8 7 12 4 4 6 8 15 19 33 10 17 24 31 22 64 16 23 18 21 23 7 16 13 12 9 24 15 15 22 6 - 0 0 0 0 9 0 0 0 7 0 0 0 0 8 33 0 0 7 0 0 0 0 0 0 11 9 5 0 0 2 0 0 0 24 0 3 0 0 0 0 0 0 0 0 11 5 55 0 0 0 3 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 17 5 31 0 3 5 3 1 0 0 0 0 0 4 0 3 0 0 - 0.06 0.07 0.07 0.08 0.08 0.08 0.11 0.09 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.06 0.06 0.07 0.07 0.07 0.07 0.06 0.07 0.06 0.07 0.11 0.11 0.09 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.07 0.08 0.07 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.09 0.08 0.07 0.07 0.08 0.07 0.09 0.08 0.08 0.09 0.08 0.09 0.08 0.06 0.06 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.08 0.08 0.09 0.09 0.1 0.11 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.15 0.08 0.07 0.08 0.08 - 28 Nai-Yuan Chiang, Victor M. Zavala hs112 hs113 hs114 hs116 hs117 hs118 hs119 hs21mod hs268 hs35mod hs3mod hs44new hs99exp hubfit hues-mod huestis humps hypcir integreq jensmp kiwcresc kowosb ksip lakes lch liarwhd linspanh liswet10 liswet11 liswet12 liswet1 liswet2 liswet3 liswet4 liswet5 liswet6 liswet7 liswet8 liswet9 lminsurf loadbal logros lootsma lotschd lsnnodoc lsqfit madsen madsschj makela1 makela2 makela3 makela4 mancino manne maratosb maratos matrix2 maxlika mccormck mconcon mdhole methanb8 methanl8 mexhat mifflin1 mifflin2 minc44 minmaxbd minmaxrb minperm minsurf mistake model morebv mosarqp1 mosarqp2 msqrtals msqrta msqrtbls msqrtb mwright nasty ncvxbqp1 ncvxqp1 ncvxqp2 ncvxqp3 ncvxqp4 ncvxqp5 ncvxqp6 ncvxqp7 ncvxqp8 ncvxqp9 ngone noncvxu2 noncvxun nondia nondquar 10 10 10 13 15 15 16 7 5 3 2 4 31 2 10000 10000 2 2 100 2 3 4 20 90 600 10000 97 10002 10002 10002 10002 10002 10002 10002 10002 10002 10002 10002 10002 15625 31 2 3 12 5 2 3 81 3 3 21 21 100 1094 2 2 6 8 50000 15 2 31 31 2 3 3 311 5 3 1113 64 9 1831 5002 2500 900 1024 1024 1024 1024 5 2 10000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100 1000 1000 9999 10000 -4.78E+01 2.43E+01 -1.77E+03 9.76E+01 3.23E+01 6.65E+02 2.45E+02 -9.60E+01 1.63E-07 2.50E-01 8.09E-08 -1.50E+01 -1.01E+09 1.69E-02 3.48E+07 3.48E+11 3.41E-12 0.00E+00 0.00E+00 1.24E+02 1.72E-07 3.08E-04 5.76E-01 3.51E+05 -4.32E+00 8.20E-22 -7.70E+01 3.93E+01 4.65E+01 -3.38E+03 2.93E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 4.21E+02 6.51E+02 1.90E+03 9.00E+00 4.53E-01 1.87E-14 1.41E+00 2.40E+03 1.23E+02 3.38E-02 6.16E-01 -7.97E+02 -1.41E+00 7.20E+00 1.81E-06 3.63E-06 1.26E-21 -9.68E-01 -1.00E+00 -1.00E+00 3.39E-07 1.14E+03 -4.57E+04 -6.23E+03 8.09E-08 2.14E-14 7.93E-14 -4.01E-02 -1.00E+00 2.57E-03 1.16E+02 3.54E-07 3.63E-04 1.00E+00 -1.00E+00 5.74E+03 1.04E-11 -9.53E+02 -1.60E+03 4.22E-16 0.00E+00 3.64E-12 0.00E+00 2.50E+01 1.53E-72 -1.99E+10 -7.15E+07 -5.78E+07 -3.05E+07 -9.40E+07 -6.63E+07 -3.41E+07 -4.34E+07 -3.04E+07 -2.15E+07 -6.36E-01 2.32E+03 2.32E+03 2.31E-25 1.62E-11 17 11 19 25 25 11 16 13 14 11 5 13 16 7 25 24 124 5 2 10 15 8 22 15 63 12 13 79 57 88 20 26 27 27 27 25 18 65 57 2 13 54 9 14 14 7 20 52 16 7 36 7 5 390 32 19 16 23 7 10 47 6 44 3 16 14 66 9 6 1 17 37 0 13 12 24 4 27 4 7 1 259 312 393 463 282 347 439 243 338 321 30 400 34 5 21 0 0 0 0 10 0 0 0 0 0 0 11 5 0 0 0 173 0 0 0 5 5 0 7 93 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 6 48 14 0 24 0 0 548 48 0 0 6 0 0 12 4 53 2 0 8 20 0 10 0 8 0 0 0 0 27 0 32 0 0 0 388 473 594 692 430 526 662 368 513 478 22 605 48 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.08 0.08 0.08 0.45 0.43 0.04 0.06 0.08 0.05 0.06 0.05 0.17 0.05 0.15 0.37 0.05 1.96 1.5 2.18 0.68 0.85 0.83 0.83 0.82 0.78 0.62 1.66 1.51 0.49 0.04 0.05 0.04 0.05 0.07 0.08 0.07 0.28 0.04 0.04 0.05 0.07 0.17 2.69 0.04 0.04 0.05 0.09 1.95 0.04 0.05 0.05 0.06 0.08 0.05 0.14 0.05 0.04 1.65 0.04 0.05 0.11 0.09 0.12 0.09 8.88 3.92 10.26 3.97 0.04 0.05 20.7 13.21 16.8 21.96 4.64 5.73 7.28 18.18 27.23 27.41 0.21 11.99 0.09 0.26 0.37 -4.78E+01 2.43E+01 -1.77E+03 9.76E+01 3.23E+01 6.65E+02 2.45E+02 -9.60E+01 1.63E-07 2.50E-01 8.09E-08 -1.30E+01 -1.01E+09 1.69E-02 3.48E+07 3.48E+11 3.88E-13 0.00E+00 0.00E+00 1.24E+02 1.72E-07 3.08E-04 5.76E-01 3.51E+05 -3.10E+00 8.20E-22 -7.70E+01 3.93E+01 4.65E+01 -3.38E+03 2.93E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 4.21E+02 6.51E+02 1.90E+03 9.00E+00 4.53E-01 1.87E-14 1.41E+00 2.40E+03 1.23E+02 3.38E-02 1.00E+00 -7.97E+02 -1.41E+00 7.20E+00 1.81E-06 3.63E-06 1.26E-21 -1.00E+00 -1.00E+00 3.39E-07 1.14E+03 -4.57E+04 -6.23E+03 8.09E-08 6.77E-23 7.85E-22 -4.01E-02 -1.00E+00 -1.00E+00 2.57E-03 1.16E+02 3.54E-07 3.63E-04 1.00E+00 -1.00E+00 5.74E+03 1.04E-11 -9.53E+02 -1.60E+03 0.00E+00 1.02E-14 0.00E+00 2.50E+01 1.53E-72 -7.15E+07 -5.78E+07 -9.40E+07 -6.62E+07 -4.34E+07 -3.04E+07 -6.38E-01 2.36E+03 2.35E+03 2.31E-25 1.62E-11 17 11 19 25 27 11 16 13 14 11 5 12 36 7 25 24 219 5 2 10 15 10 22 16 1 12 15 79 57 88 20 26 27 27 27 25 18 65 57 2 13 54 9 14 14 7 16 27 11 7 26 7 5 31 19 16 25 7 10 38 19 591 4 16 16 20 49 9 6 2 54 37 0 13 12 4 678 4 7 1 597 749 657 760 317 608 124 765 76 5 21 0 0 0 0 6 0 0 0 0 0 0 9 32 0 0 0 229 3 2 0 5 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 3 0 0 0 3 12 9 0 0 0 0 45 0 0 8 0 0 3 1 279 0 0 5 4 17 0 6 1 29 0 0 0 0 5 334 5 0 0 881 1066 961 1029 475 869 35 416 52 0 0 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.45 0.42 0.05 0.05 0.08 0.05 0.06 0.05 0.16 0.06 0.06 0.37 0.05 2 1.57 2.24 0.73 0.83 0.85 0.83 0.87 0.87 0.7 1.79 1.62 0.51 0.05 0.05 0.07 0.08 0.08 0.05 0.05 0.16 0.05 0.06 0.08 0.08 0.17 0.06 0.06 0.06 0.1 2.05 0.05 0.06 0.06 0.24 0.04 0.05 0.05 0.15 0.06 0.05 1.24 0.04 0.05 0.12 0.09 0.14 0.1 6.93 223.29 7 0.05 0.04 26.24 31.17 11.06 12.95 24.21 48.41 0.62 17.51 0.17 0.25 0.37 -4.78E+01 2.43E+01 -1.77E+03 9.76E+01 3.23E+01 6.65E+02 2.45E+02 -9.60E+01 1.63E-07 2.50E-01 8.09E-08 -1.30E+01 -1.01E+09 1.69E-02 3.48E+07 3.48E+11 3.88E-13 0.00E+00 0.00E+00 1.24E+02 1.72E-07 3.08E-04 5.76E-01 3.51E+05 -3.10E+00 8.20E-22 -7.70E+01 3.93E+01 4.65E+01 -3.38E+03 2.93E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 2.50E+01 4.21E+02 6.51E+02 1.90E+03 9.00E+00 4.53E-01 1.87E-14 1.41E+00 2.40E+03 1.23E+02 3.38E-02 6.16E-01 -7.97E+02 -1.41E+00 7.20E+00 1.81E-06 3.63E-06 1.26E-21 -1.00E+00 -1.00E+00 3.39E-07 1.14E+03 -4.57E+04 -6.23E+03 8.09E-08 6.64E-23 1.67E-18 -4.01E-02 -1.00E+00 -1.00E+00 2.57E-03 1.16E+02 3.54E-07 3.63E-04 1.00E+00 -1.00E+00 5.74E+03 1.04E-11 -9.53E+02 -1.60E+03 0.00E+00 1.30E-14 0.00E+00 2.50E+01 1.53E-72 -7.15E+07 -5.78E+07 -3.07E+07 -9.40E+07 -6.62E+07 -3.45E+07 -4.34E+07 -3.05E+07 -2.15E+07 -6.39E-01 2.35E+03 2.33E+03 2.31E-25 1.62E-11 17 11 19 25 27 11 16 13 14 11 5 12 30 7 25 24 219 5 2 10 15 10 22 16 1 12 15 77 57 88 20 26 27 27 27 25 18 65 57 2 13 54 9 14 14 7 16 27 11 7 26 7 5 31 19 16 25 7 10 38 19 597 4 16 16 21 56 9 6 1 54 37 0 13 12 4 606 4 7 1 573 728 962 615 713 860 322 581 526 133 874 83 5 21 0 0 0 0 6 0 0 0 0 0 0 9 26 0 0 0 229 0 0 0 5 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 3 9 9 0 0 0 0 45 0 0 8 0 0 3 1 295 0 0 5 3 2 0 5 0 29 0 0 0 0 0 285 0 0 0 854 1018 1214 904 981 1070 483 832 684 31 540 65 0 0 0.07 0.07 0.07 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.05 0.04 0.44 0.42 0.05 0.05 0.07 0.05 0.05 0.05 0.17 0.06 0.06 0.36 0.05 1.89 1.44 2.1 0.68 0.8 0.83 0.84 0.82 0.79 0.63 1.61 1.43 0.5 0.05 0.04 0.04 0.07 0.07 0.06 0.06 0.14 0.04 0.05 0.05 0.05 0.14 0.06 0.05 0.05 0.09 1.96 0.05 0.04 0.04 0.23 0.06 0.05 0.04 0.14 0.05 0.04 1.12 0.04 0.05 0.1 0.08 0.12 0.08 4.72 177.35 4.92 0.05 0.04 33.63 33.52 54.64 11.11 19.08 16.88 26.45 55.25 51.04 0.75 22.12 0.23 0.29 0.46 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming nonmsqrt nonscomp nuffield2 nuffield continuum obstclal obstclbl obstclbu odfits oet1 oet2 oet3 oet7 optcdeg2 optcdeg3 optcntrl optmass optprloc orthrdm2 orthrds2 orthrega orthregb orthregc orthregd orthrege osbornea osborneb oslbqp palmer1a palmer1b palmer1c palmer1d palmer1e palmer1 palmer2a palmer2b palmer2c palmer2e palmer2 palmer3a palmer3b palmer3c palmer3e palmer3 palmer4a palmer4b palmer4c palmer4e palmer4 palmer5b palmer5c palmer5d palmer6a palmer6c palmer6e palmer7c palmer8a palmer8c palmer8e penalty2 pentagon pentdi pfit1ls pfit1 pfit2ls pfit2 pfit3ls pfit3 pfit4ls pfit4 polak4 polak5 polak6 porous1 porous2 portfl1 portfl2 portfl3 portfl4 portfl6 powell20 powellbs power probpenl prodpl0 prodpl1 pspdoc pt qpcboei2 qpcstair qpnstair qr3dbd qr3dls qr3d qrtquad qudlin reading1 reading2 9 10000 2382 2 96 96 96 10 3 3 4 7 1199 1199 32 66 30 4003 203 517 27 10005 10003 36 5 11 8 6 4 8 7 8 4 6 4 8 8 4 6 4 8 8 4 6 4 8 8 4 9 6 4 6 8 8 8 6 8 8 100 6 1000 3 3 3 3 3 3 3 3 3 3 5 4900 4900 12 12 12 12 12 1000 2 1000 500 60 60 4 2 143 467 467 127 155 155 120 12 10001 15003 7.52E-01 3.98E-04 2.50E+00 1.40E+00 2.88E+00 2.88E+00 -2.38E+03 5.38E-01 8.72E-02 4.51E-03 9.97E-05 2.30E+02 4.61E+01 5.50E+02 -1.90E-01 -1.64E+01 1.56E+02 1.54E+03 1.41E+03 4.52E-20 1.90E+02 1.52E+03 6.07E-01 5.46E-05 4.01E-02 6.25E+00 8.99E-02 9.76E-02 6.53E-01 8.35E-04 1.18E+04 1.72E-02 6.23E-01 1.44E-02 2.15E-04 2.04E-02 4.23E+00 1.95E-02 5.07E-05 2.27E+03 4.06E-02 6.84E+00 5.03E-02 1.48E-04 2.29E+03 9.75E-03 2.13E+00 8.73E+01 5.59E-02 1.64E-02 2.24E-04 6.02E-01 7.40E-02 1.60E-01 6.34E-03 9.71E+04 1.37E-04 -7.50E-01 2.29E-21 2.29E-21 1.51E-21 1.51E-21 4.85E-27 4.85E-27 2.53E-07 5.00E+01 -4.40E+01 0.00E+00 0.00E+00 2.05E-02 2.97E-02 3.28E-02 2.63E-02 2.58E-02 5.21E+07 0.00E+00 0.00E+00 -2.09E-07 6.09E+01 5.30E+01 2.41E+00 1.78E-01 8.29E+06 6.20E+06 5.15E+06 1.34E-13 1.34E-13 1.34E-13 -3.65E+06 -7.20E+03 -1.60E-01 -1.10E-02 121 17 9 9 10 15 10 26 70 14 160 25 23 42 23 20 5 38 65 2 13 12 44 35 18 11 43 1 1 37 746 132 18 1 36 129 16 1 73 211 98 16 1 30 246 75 1 1 273 1 27 1 83 1 27 19 15 11 122 122 114 114 199 199 64 33 56 13 7 8 7 8 7 7 255 46 1 5 15 15 8 19 92 159 186 26 49 49 27 23 19 5 12 0 0 0 0 0 0 0 35 0 169 0 0 0 24 0 0 64 78 2 13 5 24 11 12 0 21 0 0 15 7 47 15 0 19 19 14 0 7 23 20 14 0 17 23 46 0 0 20 0 9 0 31 0 18 0 10 0 16 16 15 15 18 18 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 49 49 22 23 0 0 0.05 0.43 0.06 0.06 0.06 0.06 0.05 0.1 0.23 0.07 0.92 0.1 0.1 0.06 0.06 0.06 0.18 0.09 0.3 0.06 2.74 0.8 0.05 0.06 0.06 0.06 0.05 0.04 0.05 0.08 0.11 0.08 0.07 0.05 0.05 0.05 0.05 0.05 0.06 0.08 0.08 0.07 0.05 0.06 0.09 0.06 0.06 0.05 0.07 0.05 0.06 0.08 0.08 0.05 0.04 0.07 0.05 0.07 0.07 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.07 1.94 1.23 0.07 0.06 0.1 0.09 0.08 0.74 0.06 0.06 0.23 0.05 0.08 0.08 0.1 0.14 0.46 0.59 0.1 0.26 0.26 0.07 0.07 0.99 0.48 3.32E+00 3.98E-04 -1.82E-02 2.50E+00 1.40E+00 2.88E+00 2.88E+00 -2.38E+03 5.38E-01 4.51E-03 2.30E+02 4.61E+01 5.50E+02 -1.74E-01 -1.64E+01 1.56E+02 1.46E+03 1.66E+03 1.58E-17 1.90E+02 1.52E+03 1.84E+00 5.46E-05 6.25E+00 8.99E-02 9.76E-02 6.53E-01 8.35E-04 1.18E+04 1.72E-02 6.23E-01 1.44E-02 2.15E-04 4.58E+03 2.04E-02 4.23E+00 1.95E-02 5.07E-05 2.27E+03 4.06E-02 6.84E+00 5.03E-02 1.48E-04 2.29E+03 2.13E+00 8.73E+01 5.59E-02 1.64E-02 2.24E-04 6.02E-01 7.40E-02 1.60E-01 6.34E-03 9.71E+04 1.47E-04 -7.50E-01 4.91E-18 4.91E-18 6.39E-26 6.39E-26 1.71E-21 1.71E-21 2.64E-22 2.64E-22 2.53E-07 5.00E+01 -4.40E+01 0.00E+00 0.00E+00 2.05E-02 2.97E-02 3.28E-02 2.63E-02 2.58E-02 5.21E+07 0.00E+00 0.00E+00 -2.09E-07 6.09E+01 5.30E+01 2.41E+00 1.78E-01 8.29E+06 6.20E+06 5.15E+06 1.34E-13 1.34E-13 1.34E-13 -3.65E+06 -7.20E+03 -1.60E-01 -1.10E-02 152 17 148 9 9 10 15 10 26 14 25 23 42 20 20 5 61 28 2 126 18 60 22 11 39 1 1 32 755 94 21 1 97 23 105 16 1 28 466 39 22 1 119 132 1 1 115 1 334 1 43 1 172 19 16 11 247 247 98 98 126 126 220 220 45 33 54 13 7 8 7 8 7 7 255 46 1 5 15 15 8 19 92 159 208 58 63 67 40 21 19 5 8 0 6 0 0 0 0 0 0 0 0 0 0 17 0 0 15 16 1 63 5 42 0 0 6 0 0 13 11 6 14 0 5 8 3 11 0 5 4 5 15 0 5 7 0 0 3 0 10 0 6 0 2 0 0 0 13 13 13 13 9 9 15 15 3 0 16 3 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 21 25 23 18 0 0 0 0.06 0.43 4.02 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.09 0.05 0.08 0.08 0.19 0.1 0.13 0.04 14.56 1.24 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.08 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.06 0.07 0.07 0.07 0.08 0.08 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.06 0.04 0.06 0.05 0.05 0.04 0.05 0.04 0.06 0.06 0.06 0.07 0.08 0.08 2.46 1.94 0.05 0.05 0.06 0.05 0.06 0.57 0.06 0.05 0.21 0.04 0.05 0.04 0.07 0.15 0.46 0.59 0.15 0.26 0.22 0.06 0.05 0.95 0.49 29 3.22E+00 3.98E-04 2.50E+00 1.40E+00 2.88E+00 2.88E+00 -2.38E+03 5.38E-01 4.51E-03 8.72E-02 2.30E+02 4.61E+01 5.50E+02 -1.90E-01 -1.64E+01 1.56E+02 1.66E+03 0.00E+00 1.90E+02 1.52E+03 2.23E+00 5.46E-05 6.25E+00 8.99E-02 3.45E+00 9.76E-02 6.53E-01 8.35E-04 1.18E+04 1.72E-02 6.23E-01 1.44E-02 2.15E-04 4.58E+03 2.04E-02 4.23E+00 1.95E-02 5.07E-05 2.27E+03 4.06E-02 6.84E+00 5.03E-02 1.48E-04 2.29E+03 2.13E+00 8.73E+01 5.59E-02 1.64E-02 2.24E-04 6.02E-01 7.40E-02 1.60E-01 6.34E-03 9.71E+04 1.47E-04 -7.50E-01 4.91E-18 4.91E-18 6.39E-26 6.39E-26 1.01E-25 1.01E-25 3.16E-21 3.16E-21 2.53E-07 5.00E+01 -4.40E+01 0.00E+00 0.00E+00 2.05E-02 2.97E-02 3.28E-02 2.63E-02 2.58E-02 5.21E+07 0.00E+00 3.34E-24 -2.09E-07 6.09E+01 5.30E+01 2.41E+00 1.78E-01 8.29E+06 6.20E+06 5.15E+06 1.34E-13 1.34E-13 1.34E-13 -3.65E+06 -7.20E+03 -1.60E-01 -1.10E-02 139 17 9 9 10 15 10 26 14 81 25 23 42 20 20 5 28 1 94 16 10 22 11 39 21 1 1 31 732 95 21 1 98 23 105 16 1 28 469 39 22 1 119 134 1 1 112 1 330 1 43 1 172 19 16 11 247 247 98 98 126 126 219 219 45 33 63 13 7 8 7 8 7 7 255 46 1 5 15 15 8 19 92 159 193 55 63 67 40 21 19 5 0 0 0 0 0 0 0 0 0 25 0 0 0 18 0 0 16 0 47 5 3 0 0 6 7 0 0 13 11 6 14 0 4 8 3 11 0 5 4 5 15 0 3 7 0 0 3 0 7 0 6 0 2 0 0 0 13 13 13 13 9 9 15 15 3 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 25 23 18 0 0 0 0.07 0.49 0.06 0.06 0.05 0.06 0.06 0.14 0.11 0.48 0.14 0.13 0.08 0.06 0.06 0.19 0.19 0.07 14.04 0.98 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.07 0.06 0.06 0.05 0.06 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.07 0.07 0.08 0.09 0.08 0.08 0.06 0.05 0.05 0.05 0.06 0.07 0.06 0.06 0.05 0.05 0.06 1.77 1.08 0.05 0.05 0.05 0.06 0.08 0.58 0.05 0.05 0.22 0.05 0.05 0.05 0.09 0.12 0.45 0.55 0.15 0.29 0.24 0.06 0.05 1 0.49 30 Nai-Yuan Chiang, Victor M. Zavala reading3 recipe res rk23 robot rosenbr rosenmmx s332 s365mod s368 scon1dls scosine semicon1 semicon2 sensors sim2bqp simbqp simpllpa simpllpb sineval sinquad sinrosnb sipow1m sipow1 sipow2m sipow2 sipow3 sisser smbank smmpsf snake sosqp2 spanhyd sreadin3 srosenbr sseblin ssnlbeam stancmin static3 steenbra steenbrb steenbrd steenbre steenbrf steenbrg supersim svanberg swopf synthes1 tame tfi2 tointqor trainf trainh tridia trimloss try-b twobars ubh1 ubh5 vardim watson weeds woods yao yfit yfitu zangwil2 zangwil3 zecevic2 zecevic3 zecevic4 zigzag zy2 s201 s202 s203 s204 s205 s206 s207 s208 s209 s210 s211 s212 s213 s215 s216 s217 s219 s220 s221 s222 s223 s224 s225 202 3 18 17 14 2 5 2 7 100 1000 10000 1000 1000 1000 2 2 2 2 20 2 1000 2 2 2 2 4 4 117 720 2 20000 97 10001 10000 194 33 3 434 432 468 468 540 468 540 2 5000 83 6 2 3 50 20008 20008 10000 142 2 2 17997 19997 100 31 3 10000 2002 3 3 2 3 2 2 2 64 3 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 -9.85E-09 0.00E+00 0.00E+00 8.33E-02 1.34E+01 3.74E-21 2.99E+01 5.21E+01 6.65E-20 1.65E-08 -1.00E+04 0.00E+00 0.00E+00 -1.96E+05 8.09E-08 8.09E-08 1.00E+00 1.10E+00 2.05E-40 4.40E-11 -9.99E+04 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 5.36E-01 5.33E-10 -7.13E+06 1.05E+06 -1.96E-04 -5.00E+03 -2.76E-05 1.87E-17 1.62E+07 3.38E+02 4.25E+00 1.70E+04 9.08E+03 2.89E+04 6.67E-01 8.36E+03 6.79E-02 7.59E-01 0.00E+00 6.49E-01 1.18E+03 3.10E+00 1.23E+01 2.72E-24 9.06E+00 2.07E-15 1.51E+00 1.12E+00 1.12E+00 7.27E-27 7.02E-13 9.21E+03 6.85E-15 1.96E+02 6.69E-13 6.67E-13 -1.82E+01 0.00E+00 -4.12E+00 9.73E+01 7.56E+00 3.16E+00 2.00E+00 0.00E+00 4.90E+01 1.74E-18 1.84E-01 2.15E-21 3.08E-29 1.40E-24 3.74E-21 6.18E-17 4.25E-19 1.75E-24 1.16E-22 1.10E-09 1.26E-07 9.99E-01 -8.00E-01 -1.00E+00 1.00E+00 -1.50E+00 -8.34E-01 -3.04E+02 2.00E+00 20 2 11 9 8 21 15 21 5 366 134 55 21 65 7 7 10 8 42 20 5 22 22 26 28 11 16 13 103 7 13 6 21 124 19 10 23 61 91 6 20 15 9 5 13 1 41 71 1 32 10 9 5 5 25 12 19 40 27 47 36 1 1 8 16 10 27 9 1 7 4 4 11 4 7 21 79 348 27 11 29 8 6 9 60 29 6 9 9 10 0 0 0 8 16 0 0 12 4 170 194 0 0 94 0 0 0 0 0 5 5 0 0 0 0 0 8 0 7 0 0 0 0 0 13 0 0 0 49 0 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 12 1 5 0 4 4 0 0 0 3 0 17 5 0 0 0 0 7 0 0 0 0 0 0 6 0 0 0 0 28 0 0 0 0 0 0.05 0.05 0.05 0.07 0.08 0.07 0.05 0.05 0.25 0.98 2.84 0.17 0.09 260.47 0.05 0.05 0.05 0.05 0.08 0.82 0.08 0.66 0.67 0.34 0.35 0.6 0.05 0.06 0.17 0.05 3.28 0.35 0.27 0.09 0.06 0.06 0.26 0.69 1.63 0.05 1.05 0.05 0.05 0.05 0.53 0.07 1.69 7.88 0.13 0.06 0.05 0.05 0.41 0.48 0.07 0.07 0.06 0.56 0.18 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.08 0.05 0.08 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.06 -9.85E-09 0.00E+00 0.00E+00 8.33E-02 1.34E+01 3.74E-21 -4.40E+01 2.99E+01 5.21E+01 3.37E-18 1.65E-08 0.00E+00 0.00E+00 8.09E-08 8.09E-08 1.00E+00 1.10E+00 2.05E-40 3.06E-11 -9.99E+04 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 5.36E-01 4.10E-10 -7.13E+06 1.05E+06 -1.96E-04 -5.00E+03 2.40E+02 -2.76E-05 1.87E-17 1.62E+07 3.47E+02 4.25E+00 -1.53E+03 1.70E+04 9.09E+03 2.83E+02 2.85E+04 6.67E-01 8.36E+03 6.79E-02 7.59E-01 0.00E+00 6.49E-01 1.18E+03 3.10E+00 1.23E+01 2.72E-24 9.06E+00 2.07E-15 1.51E+00 1.12E+00 1.12E+00 7.27E-27 4.15E-06 9.21E+03 6.85E-15 1.96E+02 6.69E-13 6.67E-13 -1.82E+01 0.00E+00 -4.12E+00 9.73E+01 7.56E+00 3.16E+00 2.00E+00 0.00E+00 4.90E+01 1.74E-18 1.84E-01 2.91E-25 3.08E-29 1.40E-24 3.74E-21 6.18E-17 4.25E-19 1.75E-24 1.16E-22 1.10E-09 1.26E-07 9.99E-01 -8.00E-01 -1.00E+00 1.00E+00 -1.00E+00 -1.50E+00 -8.34E-01 -3.04E+02 2.00E+00 20 3 11 44 8 21 21 15 20 5 389 59 21 7 7 10 8 42 18 5 22 22 26 28 11 14 13 104 7 13 344 6 21 124 14 10 23 23 46 561 132 6 20 15 9 5 13 1 41 71 1 32 26 9 5 5 25 12 18 40 27 47 36 1 2 8 14 10 40 10 1 7 4 4 11 4 7 21 79 348 27 11 29 8 6 9 21 31 35 6 9 9 10 0 3 0 38 11 0 1 0 6 0 183 22 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 148 0 0 0 6 0 0 0 6 565 75 0 4 0 0 0 0 0 0 0 0 0 25 0 0 0 0 3 8 5 0 4 4 0 1 0 6 0 16 4 0 0 0 0 6 0 0 0 0 0 0 6 0 0 0 0 0 15 20 0 0 0 0 0.07 0.04 0.04 0.05 0.04 0.05 0.07 0.08 0.05 0.25 1.03 0.21 0.11 0.08 0.05 0.04 0.05 0.07 0.72 0.09 0.66 0.66 0.33 0.36 0.59 0.06 0.06 0.16 0.05 3.37 0.29 0.36 0.27 0.08 0.06 0.06 0.09 0.21 0.39 0.81 1.82 0.05 1.07 0.05 0.05 0.05 0.54 0.04 1.76 8.22 0.14 0.07 0.05 0.08 0.4 0.46 0.07 0.05 0.05 0.58 0.19 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.11 0.05 0.06 0.06 0.06 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.04 0.05 0.07 -9.85E-09 0.00E+00 0.00E+00 4.44E-01 1.34E+01 3.74E-21 -4.40E+01 2.99E+01 5.21E+01 3.37E-18 1.65E-08 0.00E+00 0.00E+00 -1.48E+05 8.09E-08 8.09E-08 1.00E+00 1.10E+00 2.10E-40 1.75E-11 -9.99E+04 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 5.36E-01 4.10E-10 -7.13E+06 1.05E+06 -1.96E-04 -5.00E+03 2.40E+02 -2.76E-05 1.87E-17 1.62E+07 3.47E+02 4.25E+00 -1.53E+03 1.70E+04 9.09E+03 1.06E+04 2.83E+02 2.83E+04 6.67E-01 8.36E+03 6.79E-02 7.59E-01 0.00E+00 6.49E-01 1.18E+03 3.10E+00 1.23E+01 6.12E-24 9.06E+00 2.07E-15 1.51E+00 1.12E+00 1.12E+00 0.00E+00 4.09E-06 9.21E+03 6.85E-15 1.96E+02 6.69E-13 6.67E-13 -1.82E+01 0.00E+00 -4.12E+00 9.73E+01 7.56E+00 3.16E+00 2.00E+00 0.00E+00 4.90E+01 1.74E-18 1.84E-01 2.91E-25 3.08E-29 1.40E-24 3.74E-21 7.69E-29 7.30E-19 1.75E-24 1.16E-22 1.10E-09 1.26E-07 9.99E-01 -8.00E-01 -1.00E+00 1.00E+00 -1.00E+00 -1.50E+00 -8.34E-01 -3.04E+02 2.00E+00 20 2 11 231 6 21 21 15 29 5 393 55 21 47 7 7 10 8 42 19 5 23 23 26 26 11 14 13 104 7 13 386 6 21 124 9 10 23 23 44 63 306 61 6 20 15 9 5 13 1 41 71 1 32 10 9 5 5 25 12 18 40 27 47 36 1 1 8 16 10 41 10 1 7 4 4 11 4 7 21 80 346 27 11 29 8 6 9 21 29 65 6 9 9 10 0 0 0 335 0 0 1 0 4 0 210 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 0 0 0 3 0 0 0 0 10 269 14 0 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 8 5 0 4 4 0 0 0 3 0 13 4 0 0 0 0 6 0 0 0 0 0 0 6 0 0 0 0 0 0 10 0 0 0 0 0.06 0.04 0.05 0.1 0.07 0.06 0.07 0.05 0.05 0.24 1.29 0.17 0.09 219.08 0.07 0.07 0.07 0.07 0.07 1 0.13 1.1 1.07 0.53 0.52 0.93 0.08 0.08 0.24 0.08 3.35 0.31 0.33 0.27 0.08 0.05 0.05 0.07 0.19 0.31 0.48 0.42 0.6 0.05 1.05 0.05 0.04 0.04 0.52 0.04 2.16 12.16 0.22 0.09 0.06 0.07 0.61 0.76 0.11 0.07 0.06 0.79 0.25 0.07 0.07 0.06 0.06 0.07 0.07 0.07 0.09 0.07 0.09 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.05 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming s226 s227 s228 s229 s230 s231 s232 s233 s234 s235 s236 s237 s238 s239 s240 s241 s242 s243 s244 s245 s246 s247 s248 s249 s250 s251 s252 s253 s254 s256 s257 s258 s259 s260 s261 s262 s263 s264 s265 s266 s267 s268 s269 s270 s271 s272 s273 s274 s275 s276 s277 s278 s279 s280 s282 s283 s286 s287 s288 s289 s290 s291 s292 s293 s294 s295 s296 s297 s298 s299 s300 s301 s302 s303 s304 s305 s307 s308 s309 s311 s312 s314 s315 s316 s317 s318 s319 s320 s321 s322 s323 s324 s325 s326 s327 s328 s329 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 8 3 3 3 3 3 4 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 6 6 2 4 6 4 6 8 10 10 10 20 20 20 30 2 10 30 50 6 10 16 30 50 100 20 50 100 20 50 100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -5.00E-01 1.00E+00 -3.00E+00 8.28E-15 3.75E-01 2.99E-14 -1.00E+00 2.43E-14 -8.00E-01 -8.20E+00 -5.89E+01 -8.20E+00 -8.20E+00 1.62E-27 1.14E-16 9.63E-08 7.97E-01 2.44E-07 1.59E-14 1.04E-21 1.72E-16 -8.00E-01 1.00E+00 -3.30E+03 -3.46E+03 4.00E-02 6.93E+01 -1.73E+00 1.71E-10 7.54E-17 2.74E-18 -8.54E+00 2.74E-18 6.37E-10 -1.00E+01 -1.00E+00 -4.41E+01 1.90E+00 1.00E+00 1.42E-18 1.63E-07 4.09E+00 9.03E-08 1.23E-30 1.53E-14 7.01E-18 1.05E-30 1.64E-28 6.40E-25 5.08E+00 7.84E+00 1.06E+01 1.34E+01 1.27E-18 1.23E-10 3.74E-20 1.37E-17 8.54E-10 0.00E+00 0.00E+00 3.82E-31 4.62E-30 7.64E-30 3.97E+00 3.99E+00 3.99E+00 4.59E-27 2.28E-21 1.30E-20 -2.00E+01 -5.00E+01 -1.00E+02 1.12E-32 1.62E-20 1.24E-38 1.24E+02 7.73E-01 2.89E-01 5.80E-25 5.92E+00 1.69E-01 -8.00E-01 3.34E+02 3.72E+02 4.13E+02 4.52E+02 4.86E+02 4.96E+02 5.00E+02 3.80E+00 5.00E+00 3.79E+00 -7.98E+01 3.06E-02 1.74E+00 -6.96E+03 8 7 8 21 9 27 7 9 12 19 29 41 19 1 11 17 4 13 11 10 15 15 7 14 12 20 14 7 17 16 40 11 40 14 8 18 9 6 7 33 14 1 15 1 75 10 1 1 1 10 11 10 12 60 35 21 40 17 8 1 1 1 1 19 29 38 60 89 162 1 1 1 11 15 19 12 9 7 6 19 3 13 7 9 10 11 13 14 38 7 13 8 12 18 16 16 0 0 0 0 3 0 4 0 0 14 5 19 12 0 3 7 0 0 8 0 0 5 0 11 9 0 0 7 0 6 5 0 5 0 0 0 0 8 0 32 0 0 15 0 81 0 0 0 0 0 0 0 0 2 0 0 5 0 6 0 0 0 0 3 7 7 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 8 8 8 8 8 8 10 32 0 0 0 3 2 0 9 0.05 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.11 0.07 0.06 0.06 0.08 0.05 0.05 0.05 0.05 0.07 0.05 0.04 0.04 0.04 0.04 0.06 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -5.00E-01 1.00E+00 -3.00E+00 8.28E-15 3.75E-01 2.99E-14 -1.00E+00 2.43E-14 -8.00E-01 -8.20E+00 -5.89E+01 -8.20E+00 -5.89E+01 1.62E-27 1.83E-18 5.06E-08 7.97E-01 2.44E-07 4.95E-13 1.04E-21 1.72E-16 -8.00E-01 1.00E+00 -3.30E+03 -3.46E+03 4.00E-02 6.93E+01 -1.73E+00 1.71E-10 7.54E-17 2.74E-18 -8.54E+00 2.74E-18 6.37E-10 -1.00E+01 -1.00E+00 -4.41E+01 1.90E+00 1.00E+00 1.50E-02 1.63E-07 4.09E+00 9.22E-08 1.23E-30 5.66E-03 7.01E-18 1.05E-30 1.64E-28 6.40E-25 5.08E+00 7.84E+00 1.06E+01 1.34E+01 1.27E-18 1.23E-10 3.74E-20 1.37E-17 8.54E-10 0.00E+00 0.00E+00 3.82E-31 4.62E-30 7.64E-30 3.97E+00 1.54E-16 3.91E-19 4.59E-27 2.28E-21 1.30E-20 -2.00E+01 -5.00E+01 -1.00E+02 1.12E-32 1.62E-20 1.24E-38 1.24E+02 7.73E-01 2.89E-01 3.18E-17 5.92E+00 1.69E-01 -8.00E-01 3.34E+02 3.72E+02 4.13E+02 4.52E+02 4.86E+02 4.96E+02 5.00E+02 3.80E+00 5.00E+00 3.79E+00 -7.98E+01 3.06E-02 1.74E+00 -6.96E+03 8 7 8 21 10 27 7 9 12 12 30 27 18 1 10 24 4 13 8 10 15 15 7 14 12 20 14 8 17 17 40 11 40 14 8 18 9 6 7 31 14 1 21 1 19 10 1 1 1 10 11 10 12 60 35 21 40 17 8 1 1 1 1 19 39 47 60 89 162 1 1 1 11 15 19 12 9 7 7 19 3 12 7 9 10 11 13 16 23 7 14 9 10 22 16 16 0 0 0 0 0 0 4 0 0 4 14 24 7 0 4 1 0 0 0 0 0 5 0 11 9 1 0 6 0 5 5 0 5 0 0 1 0 8 0 4 0 0 1 0 6 0 0 0 0 0 0 0 0 2 0 0 5 0 6 0 0 0 0 3 10 10 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 6 8 8 8 8 8 9 13 0 3 4 4 4 0 9 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.06 0.04 0.04 0.04 0.04 0.05 0.06 0.07 0.06 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.09 0.06 0.06 0.05 0.04 0.04 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.04 0.06 0.06 0.07 0.05 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.04 0.05 0.06 0.04 0.04 0.04 31 -5.00E-01 1.00E+00 -3.00E+00 8.28E-15 3.75E-01 2.99E-14 -1.00E+00 2.43E-14 -8.00E-01 4.00E-02 -8.20E+00 -5.89E+01 -5.89E+01 1.62E-27 4.85E-13 5.06E-08 7.97E-01 2.44E-07 4.95E-13 1.04E-21 1.72E-16 -8.00E-01 1.00E+00 -3.30E+03 -3.46E+03 4.00E-02 6.93E+01 -1.73E+00 1.71E-10 7.54E-17 2.74E-18 -8.54E+00 2.74E-18 6.37E-10 -1.00E+01 -1.00E+00 -4.41E+01 1.90E+00 1.00E+00 1.50E-02 1.63E-07 4.09E+00 9.22E-08 1.23E-30 5.66E-03 7.01E-18 1.05E-30 1.64E-28 6.40E-25 5.08E+00 7.84E+00 1.06E+01 1.34E+01 1.27E-18 1.23E-10 3.74E-20 1.37E-17 8.54E-10 0.00E+00 0.00E+00 3.82E-31 4.62E-30 7.64E-30 3.97E+00 1.54E-16 3.91E-19 4.59E-27 2.28E-21 1.30E-20 -2.00E+01 -5.00E+01 -1.00E+02 1.12E-32 1.62E-20 1.24E-38 1.24E+02 7.73E-01 2.89E-01 3.18E-17 5.92E+00 1.69E-01 -8.00E-01 3.34E+02 3.72E+02 4.13E+02 4.52E+02 4.86E+02 4.96E+02 5.00E+02 3.80E+00 5.00E+00 3.79E+00 -7.98E+01 3.06E-02 1.74E+00 -6.96E+03 8 7 8 21 10 27 7 9 12 39 29 29 22 1 12 24 4 13 8 10 15 15 7 14 12 20 14 7 17 17 40 11 40 14 8 18 9 6 7 31 14 1 21 1 19 10 1 1 1 10 11 10 12 60 35 21 40 17 8 1 1 1 1 19 39 47 60 89 162 1 1 1 11 15 19 12 9 7 7 19 3 12 6 7 7 8 9 11 16 7 13 8 12 22 16 16 0 0 0 0 0 0 4 0 0 1 24 5 13 0 0 1 0 0 0 0 0 5 0 11 9 0 0 7 0 5 5 0 5 0 0 0 0 8 0 4 0 0 1 0 6 0 0 0 0 0 0 0 0 2 0 0 5 0 6 0 0 0 0 3 10 10 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 6 0 0 0 0 0 0 0 0 0 0 3 4 0 9 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.08 0.05 0.07 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.08 0.07 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.09 0.09 0.06 0.05 0.05 0.04 0.04 0.04 0.06 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 32 Nai-Yuan Chiang, Victor M. Zavala s330 s331 s333 s334 s335 s336 s337 s338 s339 s340 s341 s342 s343 s344 s345 s346 s348 s350 s351 s352 s353 s354 s355 s356 s357 s358 s359 s360 s361 s365 s366 s367 s368 s369 s370 s371 s372 s373 s374 s375 s377 s378 s379 s380 s381 s382 s383 s386 s387 s388 s389 s392 s393 s394 s395 IEEE 57 IEEE 162 IEEE 300 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 7 7 7 8 8 6 9 9 9 10 10 10 10 11 12 13 13 14 2 15 15 15 33 48 20 50 738 369 3910 1.62E+00 4.26E+00 4.33E-02 8.21E-03 -4.47E-03 -3.38E-01 6.00E+00 -7.21E+00 3.36E+00 -5.40E-02 -2.26E+01 -2.26E+01 -5.68E+00 3.26E-02 3.26E-02 -5.68E+00 3.70E+01 3.08E-04 3.19E+02 9.03E+02 -3.99E+01 1.14E-01 6.97E+01 1.88E+00 3.58E-01 5.46E-05 -5.50E+06 -5.28E+06 -1.53E+04 5.21E+01 1.23E+03 -1.42E-14 7.05E+03 2.29E-03 1.40E-06 1.34E+04 2.33E-01 -1.52E+01 -7.95E+02 -4.78E+01 4.01E-02 3.17E+00 1.01E+00 1.04E+00 7.29E+05 0.00E+00 -8.25E+03 -5.82E+03 -5.81E+03 -1.10E+06 8.63E-01 1.92E+00 1.92E+00 8.96E-05 1.64E+00 1.17E-02 10 6 7 7 26 17 7 13 8 8 7 12 13 6 9 13 14 8 10 1 7 10 47 15 10 24 16 22 18 14 20 13 12 12 12 3 54 19 23 22 18 69 10 10 10 1 17 62 182 34 27 14 14 20 109 34 0 0 3 5 0 12 0 18 0 3 0 0 1 0 0 1 0 5 7 0 0 0 35 10 0 7 0 21 5 4 3 20 0 0 0 0 69 18 0 12 12 13 0 0 0 0 10 76 254 0 18 9 11 0 132 17 0.08 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.04 0.04 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.08 0.08 0.07 0.07 0.05 0.05 0.04 0.07 0.05 0.05 0.07 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.08 0.06 0.06 0.05 0.04 0.16 0.85 0.82 1.62E+00 4.26E+00 4.33E-02 8.21E-03 -4.47E-03 -3.38E-01 6.00E+00 -7.21E+00 3.36E+00 -5.40E-02 -2.26E+01 -2.26E+01 -5.68E+00 3.26E-02 3.26E-02 -5.68E+00 3.70E+01 3.08E-04 3.19E+02 9.03E+02 -3.99E+01 1.14E-01 6.97E+01 1.88E+00 3.58E-01 5.46E-05 -5.50E+06 -5.28E+06 -1.53E+04 1.23E+03 -3.74E+01 1.07E-14 7.05E+03 2.29E-03 1.40E-06 1.34E+04 2.33E-01 -1.52E+01 -7.95E+02 -4.74E+01 3.17E+00 1.01E+00 1.04E+00 7.29E+05 0.00E+00 -8.25E+03 -5.82E+03 -5.81E+03 -1.10E+06 1.03E+00 4.97E+00 1.92E+00 8.96E-05 1.64E+00 1.17E-02 10 6 7 8 26 18 7 19 8 8 10 13 13 6 9 13 14 10 11 1 7 10 49 40 10 20 16 35 26 20 16 5 12 12 12 3 60 19 23 27 45 10 10 10 1 17 30 40 34 14 13 14 20 23 31 0 0 0 0 0 11 0 20 0 4 4 6 1 0 0 1 0 1 2 0 0 0 24 11 0 0 0 22 1 3 9 0 0 0 0 0 11 19 0 9 1 0 0 0 0 10 10 18 0 2 0 3 0 0 0 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.05 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.12 0.2 0.55 1.62E+00 4.26E+00 4.33E-02 8.21E-03 -4.47E-03 -3.38E-01 6.00E+00 -7.21E+00 3.36E+00 -5.40E-02 -2.26E+01 -2.26E+01 -5.68E+00 3.26E-02 3.26E-02 -5.68E+00 3.70E+01 3.08E-04 3.19E+02 9.03E+02 -3.99E+01 1.14E-01 6.97E+01 1.88E+00 3.58E-01 5.46E-05 -5.50E+06 -5.28E+06 -1.53E+04 5.22E+01 1.23E+03 -3.74E+01 -7.11E-15 7.05E+03 2.29E-03 1.40E-06 1.10E+05 1.34E+04 2.33E-01 -1.52E+01 -7.95E+02 3.17E+00 1.01E+00 1.04E+00 7.29E+05 0.00E+00 -8.25E+03 -5.82E+03 -5.81E+03 -1.10E+06 1.03E+00 4.97E+00 1.92E+00 8.96E-05 1.64E+00 1.17E-02 10 6 7 8 26 25 7 11 8 8 7 12 13 6 9 13 14 10 11 1 7 10 49 40 10 20 16 35 26 24 20 13 5 12 12 12 28 3 39 19 23 56 10 10 10 1 21 63 33 34 14 13 14 20 23 31 0 0 0 0 0 0 0 9 0 3 0 0 1 0 0 1 0 1 2 0 0 0 24 11 0 0 0 22 1 8 3 0 0 0 0 0 0 0 2 18 0 0 0 0 0 0 12 36 14 0 2 0 3 0 0 0 0.05 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.17 0.18 0.58 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming 33 Table A2: Percentage of steps accepted by different criteria in the filter. Problem aircrfta aircrftb airport aljazzaf allinit allinitc alsotame argtrig aug2d aug2dc aug2dcqp aug2dqp aug3d aug3dc aug3dcqp aug3dqp avgasa avgasb avion2 bdvalue biggs3 biggs5 biggsb1 biggsc4 blockqp1 blockqp2 blockqp3 blockqp4 blockqp5 bloweya bloweyb bloweyc booth box2 bqp1var bqpgabim brainpc2 brainpc7 brainpc9 bratu2d bratu2dt bratu3d broydn3d broydnbd bt1 bt10 bt11 bt12 bt13 bt2 bt3 bt4 bt5 bt6 bt7 bt8 bt9 byrdsphr camel6 cantilvr catena catenary cb2 cb3 cbratu2d cbratu3d chaconn1 chaconn2 chandheq chemrcta chenhark clnlbeam cluster concon congigmz coolhans core2 coshfun csfi1 csfi2 cvxqp1 cvxqp2 cvxqp3 deconvc degenlpa degenlpb demymalo dipigri dittert dixchlng dixchlnv dnieper drcavty1 SAC 0 92 27 3 91 25 63 0 0 92 48 38 0 0 65 67 56 73 38 100 100 92 91 90 89 92 89 93 88 83 90 0 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 82 0 0 0 0 0 0 0 0 0 0 100 70 0 11 0 0 0 0 18 5 7 19 43 16 0 8 9 11 0 7 99 IBR SRCO 0 8 0 47 0 18 25 0 0 0 33 31 100 100 35 33 11 0 38 0 0 8 4 10 11 8 11 7 13 17 10 0 0 0 0 72 95 100 0 0 0 0 0 71 0 43 25 41 92 100 33 14 62 100 9 18 18 69 20 19 44 67 0 0 57 71 100 0 30 0 33 40 0 58 86 13 35 0 65 25 6 41 67 91 44 94 10 1 SRCC 100 0 73 50 9 57 13 100 100 8 19 31 0 0 0 0 33 27 25 0 0 0 4 0 0 0 0 0 0 0 0 100 0 0 0 28 5 0 100 100 100 100 100 29 100 57 75 59 8 0 67 86 23 0 91 82 0 31 80 81 56 33 100 100 43 29 0 0 0 100 56 60 100 42 14 68 59 93 16 32 77 59 25 0 44 0 83 1 SAC 0 94 27 6 82 27 63 0 0 92 48 38 0 0 65 67 56 73 34 100 100 92 91 90 89 92 89 87 88 83 90 0 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100 65 0 11 0 0 4 6 18 5 7 0 43 16 0 8 13 11 0 7 - IFRd SRCO 0 6 0 48 0 12 25 0 0 0 33 31 100 100 35 33 11 0 47 0 0 8 5 10 11 8 11 13 13 17 10 0 0 0 0 0 0 0 0 0 71 0 43 25 41 92 100 33 33 62 38 100 5 18 0 69 31 15 44 67 0 0 57 71 100 0 23 0 33 40 0 42 72 13 35 0 95 25 6 67 67 78 44 94 10 - SRCC 100 0 73 45 18 62 13 100 100 8 19 31 0 0 0 0 33 27 19 0 0 0 5 0 0 0 0 0 0 0 0 50 0 0 0 100 100 100 100 100 29 100 57 75 59 8 0 67 67 23 62 0 95 82 0 31 69 85 56 33 100 100 43 29 0 0 12 100 56 60 100 54 22 68 59 93 5 32 77 33 25 9 44 0 83 - SAC 0 94 27 82 27 63 0 0 92 48 38 0 0 65 67 56 73 100 100 92 91 90 89 92 89 87 88 83 90 0 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 60 0 11 0 0 7 3 18 5 7 0 43 16 0 8 13 11 0 7 - IFRt SRCO 0 6 0 9 23 25 0 0 0 33 31 100 100 35 33 11 0 0 0 8 5 10 11 8 11 13 13 17 10 0 0 0 0 0 0 0 0 0 67 0 43 25 41 92 100 33 14 62 100 5 18 0 69 30 15 44 67 0 0 57 71 100 17 0 27 0 33 44 0 71 60 13 35 0 95 25 6 41 67 78 44 94 10 - SRCC 100 0 73 9 50 13 100 100 8 19 31 0 0 0 0 33 27 0 0 0 5 0 0 0 0 0 0 0 0 100 0 0 0 100 100 100 100 100 33 100 57 75 59 8 0 67 86 23 0 95 82 0 31 70 85 56 33 100 100 43 29 0 83 0 13 100 56 56 100 21 38 68 59 93 5 32 77 59 25 9 44 0 83 - 34 Nai-Yuan Chiang, Victor M. Zavala drcavty2 drcavty3 dtoc1l dtoc1na dtoc1nb dtoc1nc dtoc1nd dtoc2 dtoc3 dtoc4 dtoc5 dtoc6 dual1 dual2 dual3 dual4 dualc1 dualc2 dualc5 dualc8 eg3 eigena2 eigenaco eigenb2 eigenbco eigenc2 eigencco eigmaxb eigmaxc eigminb eigminc expfita expfitb expfitc expquad extrasim fccu fletcher gausselm genhs28 gigomez1 gilbert goffin gottfr gouldqp2 gouldqp3 gpp gridneta gridnetb gridnetc gridnetd gridnete gridnetf gridnetg gridneth gridneti hadamard hager1 hager2 hager3 hager4 haifam haifas haldmads hatfldb hatfldc hatfldg hatfldh heart6 heart8 himmelba himmelbc himmelbe himmelbi himmelbk himmelp1 himmelp2 himmelp3 himmelp4 himmelp5 himmelp6 hong hs001 hs002 hs003 hs004 hs005 hs006 hs007 hs008 hs009 hs010 hs011 hs012 hs013 hs014 hs015 48 92 83 17 20 6 5 0 0 0 0 0 85 91 90 90 10 19 33 25 0 50 67 50 42 5 25 0 0 0 0 97 94 95 90 80 0 0 0 0 86 0 67 67 6 50 0 75 48 40 75 12 50 85 50 0 0 0 86 1 7 3 100 100 0 86 0 0 0 0 0 94 0 92 0 15 7 0 13 85 100 91 100 100 88 0 30 0 100 0 13 9 48 0 20 52 7 17 50 20 71 82 70 0 33 0 0 15 0 0 10 67 57 25 6 100 0 0 0 57 95 75 55 63 73 50 3 6 5 10 20 100 100 44 11 0 0 33 33 83 14 0 25 26 40 25 24 33 8 0 0 0 0 14 65 32 81 0 0 0 7 0 0 0 0 0 6 83 8 78 77 87 100 88 15 0 9 0 0 13 50 40 0 0 20 38 27 29 57 47 1 1 0 33 60 24 14 30 100 67 100 100 0 9 10 0 23 24 42 69 0 0 0 0 1 0 0 36 13 9 30 0 0 0 0 0 0 0 56 89 14 100 0 0 11 36 100 0 26 20 0 65 17 8 50 100 100 100 0 33 61 16 0 0 100 7 100 100 100 100 100 0 17 0 22 8 7 0 0 0 0 0 0 0 0 50 30 100 0 80 50 64 23 43 33 83 17 20 13 2 0 0 0 0 0 85 91 90 90 10 19 33 25 0 50 50 50 50 3 11 0 0 0 0 97 94 95 55 80 0 26 47 0 0 0 83 0 67 67 6 50 0 75 48 40 75 18 67 85 50 0 0 0 86 1 0 100 100 0 86 0 0 0 0 0 94 0 94 0 15 7 0 13 85 100 91 100 100 88 0 0 0 100 0 13 9 61 0 17 17 50 20 63 82 50 0 33 0 0 15 0 0 10 67 57 25 6 96 0 0 0 0 75 89 55 63 73 40 3 6 5 45 20 100 21 47 100 44 11 0 0 33 33 83 14 0 25 26 40 25 18 17 8 0 0 0 0 14 52 63 0 0 0 7 0 0 0 0 0 6 83 6 91 77 87 84 88 15 0 9 0 0 13 75 20 0 0 20 38 27 30 57 58 0 33 60 25 16 50 100 67 100 100 0 9 10 0 23 24 42 69 4 0 0 0 50 22 0 27 13 9 40 0 0 0 0 0 0 47 7 0 56 89 17 100 0 0 11 36 100 0 26 20 0 65 17 8 50 100 100 100 0 47 37 0 0 100 7 100 100 50 100 67 0 17 0 9 8 7 16 0 0 0 0 0 0 0 25 80 100 0 80 50 64 9 43 25 83 17 20 5 1 0 0 0 0 0 85 91 90 90 10 19 33 25 0 50 50 50 50 1 11 0 0 0 0 97 94 95 55 80 0 47 0 0 0 83 0 67 67 6 50 0 75 48 40 75 18 67 85 43 0 0 0 86 1 0 1 100 100 0 86 0 0 0 0 0 94 0 94 0 15 7 0 13 85 100 91 100 100 88 0 30 0 100 0 13 9 48 0 16 17 50 20 74 89 50 0 33 0 0 15 0 0 10 67 57 25 6 96 0 0 0 0 55 89 55 63 73 50 3 6 4 45 20 100 47 100 44 27 0 0 33 33 83 14 0 25 26 40 25 18 17 8 14 0 0 0 14 66 63 53 0 0 0 7 0 0 0 0 0 6 83 6 85 77 87 100 88 15 0 9 0 0 13 50 40 0 0 20 38 27 29 57 74 0 33 60 21 10 50 100 67 100 100 0 9 10 0 23 24 42 69 4 0 0 0 50 44 0 27 13 9 30 0 0 1 0 0 0 7 0 56 73 17 100 0 0 11 36 100 0 26 20 0 65 17 8 43 100 100 100 0 33 37 46 0 0 100 7 100 100 100 100 100 0 17 0 15 8 7 0 0 0 0 0 0 0 0 50 30 100 0 80 50 64 23 43 11 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming hs016 hs017 hs018 hs019 hs020 hs021 hs022 hs023 hs024 hs025 hs026 hs027 hs028 hs029 hs030 hs031 hs032 hs033 hs034 hs035 hs036 hs037 hs039 hs040 hs041 hs042 hs043 hs044 hs046 hs047 hs048 hs049 hs050 hs051 hs052 hs053 hs054 hs055 hs056 hs057 hs059 hs060 hs061 hs062 hs063 hs064 hs065 hs066 hs067 hs070 hs071 hs072 hs073 hs074 hs075 hs076 hs077 hs078 hs079 hs080 hs081 hs083 hs084 hs085 hs086 hs087 hs088 hs089 hs090 hs091 hs092 hs095 hs096 hs097 hs098 hs099 hs100 hs100lnp hs100mod hs101 hs102 hs103 hs104 hs105 hs106 hs108 hs109 hs111 hs111lnp hs112 hs113 hs114 hs116 hs117 hs118 hs119 hs21mod 18 0 0 13 17 78 0 0 100 97 6 100 9 21 0 17 11 11 100 100 100 0 0 80 0 11 100 6 6 100 100 100 100 0 33 86 71 8 5 3 0 20 100 0 6 0 0 25 9 0 0 13 11 25 100 0 0 0 0 0 27 11 0 100 0 13 8 11 12 16 11 11 16 10 0 8 13 8 2 3 1 0 91 13 0 9 5 5 71 9 0 20 4 45 63 85 64 95 67 47 75 11 71 100 0 3 94 0 73 21 86 83 89 67 0 0 0 9 0 0 17 33 0 94 94 0 0 0 0 100 67 14 14 54 90 63 100 10 0 29 65 80 86 75 83 63 0 88 11 38 0 75 0 100 33 33 33 79 64 0 29 38 23 37 31 42 68 72 47 61 57 67 75 85 60 50 26 56 9 53 81 18 9 9 29 91 84 72 96 55 38 0 18 5 33 40 8 11 29 0 0 0 0 0 18 57 14 0 0 22 0 0 0 91 100 20 83 56 0 0 0 0 0 0 0 0 0 0 14 38 5 35 0 70 0 71 29 20 14 0 9 38 100 0 78 38 0 25 100 0 67 67 40 11 36 0 71 50 69 53 58 42 21 17 37 29 43 25 13 8 38 47 73 44 0 33 19 73 86 86 0 0 16 8 0 0 0 15 18 0 8 11 17 78 0 0 100 94 6 5 100 9 21 0 17 11 11 100 100 100 0 0 80 0 11 100 6 6 100 100 100 100 0 33 86 71 4 5 0 0 11 100 13 6 0 0 25 28 0 0 13 11 25 100 0 0 0 0 0 27 11 0 100 0 11 17 10 10 6 9 11 14 17 0 8 13 8 4 2 3 0 83 13 0 9 5 4 71 9 0 20 4 45 63 85 64 95 54 39 75 11 71 100 0 6 94 43 0 73 21 86 83 89 67 0 0 0 5 0 0 17 33 0 94 94 0 0 0 0 100 67 14 14 54 80 94 100 11 0 25 65 80 86 75 61 63 0 88 11 38 0 75 0 100 33 29 33 79 64 0 29 17 23 38 15 38 70 72 48 57 57 67 75 85 67 39 40 56 17 53 80 18 44 7 29 91 84 72 96 55 38 0 18 5 38 50 8 11 29 0 0 0 0 52 0 18 57 14 0 0 22 0 0 0 95 100 20 83 56 0 0 0 0 0 0 0 0 0 0 14 42 15 6 0 78 0 63 29 20 14 0 11 38 100 0 78 38 0 25 100 0 67 71 40 11 36 0 71 72 60 52 75 56 22 17 38 26 43 25 13 8 29 59 57 44 0 33 20 73 52 89 0 0 16 8 0 0 0 15 18 0 0 13 17 78 0 0 100 94 6 100 9 21 0 17 11 11 100 100 100 0 0 80 0 11 100 6 6 100 100 89 100 0 50 86 71 8 5 7 0 0 100 0 6 0 0 17 28 0 0 13 11 25 100 0 0 0 0 0 27 11 0 100 0 8 13 14 2 6 9 11 14 17 0 8 13 8 0 88 13 0 9 71 9 0 20 4 45 63 85 35 64 95 67 47 75 11 71 100 0 6 94 0 73 21 86 83 89 67 0 0 0 5 0 0 17 33 0 94 94 0 0 11 0 100 50 14 14 54 80 61 100 20 0 29 65 80 86 83 61 63 0 88 11 38 0 75 0 100 33 25 33 79 64 0 29 21 32 32 28 38 70 72 48 57 57 67 75 85 56 13 53 80 18 29 91 84 72 96 55 38 0 18 5 33 40 8 11 29 0 0 0 0 0 18 57 14 0 0 22 0 0 0 95 100 20 83 56 0 0 0 0 0 0 0 0 0 0 14 38 15 32 0 80 0 71 29 20 14 0 11 38 100 0 78 38 0 25 100 0 67 75 40 11 36 0 71 71 55 55 70 56 22 17 38 26 43 25 13 8 44 0 33 20 73 0 0 16 8 0 0 0 15 36 Nai-Yuan Chiang, Victor M. Zavala hs268 hs35mod hs3mod hs44new hs99exp hubfit hues-mod huestis hypcir integreq kiwcresc ksip lakes lch linspanh liswet1 liswet10 liswet11 liswet12 liswet2 liswet3 liswet4 liswet5 liswet6 liswet7 liswet8 liswet9 lminsurf loadbal lootsma lotschd lsnnodoc lsqfit madsen madsschj makela1 makela2 makela3 makela4 manne maratos matrix2 maxlika mconcon mifflin1 mifflin2 minc44 minmaxbd minmaxrb minperm minsurf mistake model morebv mosarqp1 mosarqp2 msqrta msqrtb mwright ncvxqp1 ncvxqp2 ncvxqp3 ncvxqp4 ncvxqp5 ncvxqp6 ncvxqp7 ncvxqp8 ncvxqp9 ngone nuffield continuum nuffield2 odfits oet1 oet2 oet3 oet7 optcdeg2 optcdeg3 optcntrl optmass optprloc orthrdm2 orthrds2 orthrega orthregb orthregc orthregd orthrege oslbqp pentagon polak4 polak5 polak6 porous1 porous2 portfl1 portfl2 93 100 100 100 6 100 92 25 0 0 0 91 7 38 54 25 81 75 81 46 44 44 44 44 11 75 70 0 100 11 86 79 100 0 13 0 0 8 86 44 0 0 91 0 6 0 0 44 0 0 0 19 85 67 0 0 0 100 100 100 100 100 100 100 100 100 0 100 80 85 1 93 9 48 43 10 0 0 0 0 54 0 0 0 2 91 93 3 0 0 0 0 100 100 7 0 0 0 69 0 4 4 0 0 27 9 80 44 38 5 1 2 1 4 0 0 7 4 6 2 2 50 0 89 7 21 0 55 46 81 57 22 14 52 21 100 9 40 25 71 33 44 17 0 71 70 15 33 0 0 57 0 0 0 0 0 0 0 0 0 80 0 10 12 73 7 61 40 57 10 91 95 60 0 29 50 77 75 80 0 7 59 82 41 0 0 0 0 0 0 0 0 25 0 4 71 100 100 73 0 13 17 8 70 18 23 18 50 56 56 48 52 83 23 28 50 0 0 7 0 0 45 40 19 43 69 0 4 79 0 0 60 69 29 67 11 67 100 29 11 0 0 100 100 43 0 0 0 0 0 0 0 0 0 20 0 10 4 26 0 29 12 0 81 9 5 40 100 17 50 23 25 18 9 0 38 18 59 100 100 0 0 93 100 100 100 3 100 92 25 0 0 0 91 13 100 73 25 81 75 81 46 44 44 44 44 11 75 70 0 100 11 86 79 100 0 7 0 0 12 86 0 0 92 0 6 0 0 0 44 0 0 0 19 85 67 0 0 0 100 100 100 100 100 100 0 100 6 80 85 93 48 43 10 5 0 0 0 75 0 5 0 5 91 94 2 0 0 0 0 100 100 7 0 0 0 56 0 4 4 0 0 27 9 56 0 20 5 1 2 1 4 0 0 7 4 6 2 2 50 0 89 7 21 0 88 63 73 57 19 14 21 100 8 40 25 63 75 27 44 0 50 59 70 15 33 0 0 57 0 0 0 0 0 0 68 0 57 10 12 7 40 57 10 60 95 60 13 11 50 75 56 72 0 6 56 82 59 0 0 0 0 0 0 0 0 42 0 4 71 100 100 73 0 31 0 7 70 18 23 18 50 56 56 48 52 83 23 28 50 0 0 7 0 0 13 30 27 43 69 0 79 0 0 60 69 38 25 73 11 50 50 41 11 0 0 100 100 43 0 0 0 0 0 0 32 0 37 10 4 0 12 0 81 35 5 40 87 14 50 20 44 23 9 0 42 18 41 100 100 0 0 93 100 100 100 3 100 92 25 0 0 0 91 6 100 73 25 81 75 81 46 44 44 44 44 11 75 70 0 100 11 86 79 100 0 7 0 0 12 86 0 0 92 0 6 0 0 0 44 0 0 0 19 85 67 0 0 0 100 83 63 100 100 100 100 100 57 0 100 50 85 93 1 48 43 10 0 0 0 75 0 5 0 0 91 94 2 0 0 0 0 100 100 7 0 0 0 63 0 4 4 0 0 27 9 63 0 20 5 1 2 1 4 0 0 7 4 6 2 2 50 0 89 7 21 0 63 67 73 57 19 14 21 100 8 40 25 63 62 29 44 50 0 59 70 15 33 0 0 57 0 17 37 0 0 0 0 0 43 73 0 40 12 7 72 40 57 10 65 95 60 11 0 82 88 50 0 6 56 82 51 0 0 0 0 0 0 0 0 33 0 4 71 100 100 73 0 31 0 7 70 18 23 18 50 56 56 48 52 83 23 28 50 0 0 7 0 0 38 26 27 43 69 0 79 0 0 60 69 38 38 71 11 50 100 41 11 0 0 100 100 43 0 0 0 0 0 0 0 0 0 27 0 10 4 0 27 12 0 81 35 5 40 14 100 13 13 50 9 0 42 18 49 100 100 0 0 An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming portfl3 portfl4 portfl6 powell20 powellbs prodpl0 prodpl1 pspdoc pt qpcboei2 qpcstair qpnstair qrtquad reading1 reading2 reading3 recipe res rk23 robot rosenmmx s332 s365mod s368 semicon1 semicon2 simbqp simpllpa simpllpb sinrosnb sipow1 sipow1m sipow2 sipow2m sipow3 smbank smmpsf snake sosqp2 spanhyd sreadin3 sseblin ssnlbeam stancmin static3 steenbra steenbrb steenbrd steenbre steenbrf steenbrg supersim svanberg swopf synthes1 tame tfi2 trainf trainh trimloss try-b twobars ubh1 ubh5 woods yfit zangwil3 zecevic2 zecevic3 zecevic4 zigzag zy2 s203 s215 s216 s217 s219 s220 s221 s222 s223 s224 s225 s226 s227 s228 s229 s230 s231 s232 s233 s234 s235 s236 s237 s238 s239 100 100 100 1 0 33 13 88 89 5 6 5 96 5 80 15 0 45 11 0 7 5 92 0 0 86 80 75 20 91 91 96 96 91 77 17 14 77 50 5 21 50 43 69 51 0 5 0 11 0 92 59 41 0 0 0 40 0 100 100 0 88 0 10 0 11 0 13 0 0 0 59 0 11 100 0 13 14 13 95 11 93 100 11 0 5 0 5 5 0 0 0 37 0 20 40 0 5 1 6 5 4 95 20 10 0 27 67 63 80 48 8 100 100 14 0 0 80 9 9 4 0 9 23 6 14 8 33 1 79 0 0 11 21 0 60 60 78 20 8 41 46 97 100 67 40 0 0 0 0 13 63 80 93 89 75 38 67 33 35 34 67 78 0 100 63 29 88 5 44 7 0 78 100 84 97 61 79 0 0 0 62 100 47 47 13 5 93 88 90 0 0 0 75 100 27 22 38 13 48 0 0 0 0 20 25 0 0 0 0 4 0 0 77 71 15 17 94 0 50 57 20 29 17 35 40 11 0 0 0 13 3 0 33 20 100 0 0 100 0 38 10 7 0 25 50 33 67 65 7 33 11 0 0 25 57 0 0 44 0 0 11 0 11 3 34 16 100 100 100 1 0 33 13 88 89 5 6 5 98 5 80 15 0 45 7 0 0 7 5 80 0 0 86 80 75 20 91 91 96 96 91 77 17 14 77 68 50 5 36 50 87 43 70 95 20 0 5 0 11 0 92 59 41 0 4 0 40 0 100 100 0 88 0 10 0 10 0 13 0 0 0 55 51 0 11 100 0 13 14 13 95 0 93 100 11 0 0 7 7 0 0 0 0 37 0 20 40 0 5 1 6 4 3 95 20 10 0 27 75 63 62 80 25 20 100 100 14 0 0 80 9 9 4 0 9 23 6 29 8 28 33 1 57 0 13 0 4 1 54 0 60 60 78 20 8 41 46 97 96 67 40 0 0 0 0 13 64 80 75 90 75 38 67 33 5 35 40 67 78 0 100 63 29 88 5 80 7 0 78 100 100 80 85 89 0 0 0 62 100 47 47 13 5 93 88 90 0 0 0 75 67 27 18 38 38 13 70 0 0 0 0 20 25 0 0 0 0 4 0 0 77 57 15 3 17 94 7 50 0 57 26 4 27 17 35 40 11 0 0 0 13 3 0 33 20 100 0 0 50 0 36 10 25 0 25 50 33 67 95 10 9 33 11 0 0 25 57 0 0 20 0 0 11 0 0 13 7 11 100 100 100 1 0 33 13 88 89 5 6 6 98 5 80 15 0 45 0 0 0 7 3 80 0 0 86 80 75 20 91 91 100 96 91 77 17 14 77 65 50 5 33 50 87 39 68 51 91 43 0 5 0 11 0 92 59 41 0 0 0 40 0 100 100 0 88 0 10 0 10 0 13 0 0 0 59 34 0 11 100 0 13 14 13 95 0 93 100 11 0 5 3 0 0 37 0 0 0 37 0 20 40 0 5 1 6 5 3 95 20 10 0 27 96 50 62 80 34 20 100 100 14 0 0 80 4 4 0 0 9 23 6 14 8 31 33 1 67 0 13 4 5 14 3 10 0 60 60 78 20 8 41 46 97 100 67 40 0 0 0 0 13 63 80 71 90 75 38 67 33 5 34 11 67 78 0 100 63 29 88 5 80 7 0 78 100 59 90 97 95 0 0 0 62 100 47 47 13 5 93 88 90 0 0 0 75 100 27 4 50 38 13 62 0 0 0 0 20 25 0 4 4 0 4 0 0 77 71 15 5 17 94 0 50 0 57 27 35 7 48 17 35 40 11 0 0 0 13 3 0 33 20 100 0 0 100 0 38 10 29 0 25 50 33 67 95 7 55 33 11 0 0 25 57 0 0 20 0 0 11 0 36 7 3 5 38 Nai-Yuan Chiang, Victor M. Zavala s241 s242 s244 s247 s248 s249 s250 s251 s252 s253 s254 s257 s259 s262 s263 s264 s265 s268 s269 s270 s277 s278 s279 s280 s307 s315 s316 s317 s318 s319 s320 s321 s322 s323 s324 s325 s326 s327 s328 s329 s330 s331 s335 s336 s337 s338 s339 s340 s341 s342 s343 s344 s345 s346 s348 s353 s354 s355 s356 s357 s358 s359 s360 s361 s365 s366 s367 s369 s372 s373 s374 s375 s377 s378 s380 s381 s382 s383 s387 s388 s389 s392 s393 s394 s395 IEEE 57 IEEE 162 IEEE 300 0 94 100 13 0 0 100 100 5 100 0 75 82 50 0 11 17 93 0 7 80 82 80 83 100 8 0 22 20 9 15 7 5 0 0 13 8 6 81 13 0 83 0 6 0 15 13 88 14 0 0 0 0 0 7 0 100 4 0 0 92 100 9 22 0 5 8 0 0 32 48 5 1 90 0 80 6 2 5 9 15 7 0 0 4 3 73 6 0 73 47 100 0 0 65 0 14 25 18 50 17 44 67 7 100 93 0 0 0 0 0 77 14 11 10 9 8 14 16 71 62 50 58 83 19 56 50 17 8 12 86 15 88 0 43 33 69 100 89 69 36 71 0 89 87 100 8 0 91 78 43 75 58 67 72 16 48 9 42 0 80 20 53 63 44 38 85 93 93 80 94 53 27 0 0 13 53 0 0 0 30 0 86 0 0 0 83 44 17 0 0 0 20 18 20 17 0 15 86 67 70 82 77 79 79 29 38 38 33 11 0 31 50 0 92 82 14 69 0 13 43 67 31 0 11 31 57 29 0 6 13 0 0 0 0 0 57 20 33 33 28 53 4 86 57 10 20 0 41 35 51 53 0 0 7 20 2 44 0 96 100 13 0 0 100 100 5 100 0 76 82 50 0 11 17 93 0 5 80 82 80 83 100 8 0 22 20 9 15 13 0 0 7 11 10 9 81 13 0 83 0 6 0 21 13 88 10 0 0 0 0 0 7 0 100 0 0 0 95 100 6 19 5 0 8 0 2 32 48 4 0 90 0 80 6 3 3 9 21 0 0 0 0 0 80 4 0 73 47 100 0 0 70 0 25 24 18 50 17 44 67 7 100 86 0 0 0 0 0 83 14 11 10 9 8 6 22 71 57 67 60 77 19 56 50 17 8 11 86 16 88 0 40 23 69 100 89 69 36 71 0 86 55 100 5 0 94 77 75 88 58 67 70 16 48 7 42 0 80 20 53 50 53 38 71 100 100 80 96 61 20 0 0 13 53 0 0 0 25 0 75 0 0 0 83 44 17 0 0 10 20 18 20 17 0 8 86 67 70 82 77 81 78 29 36 22 30 14 0 31 50 0 92 83 14 63 0 13 50 77 31 0 11 31 57 29 0 14 45 0 0 0 0 4 20 13 33 33 28 53 4 89 58 10 20 0 41 47 45 53 7 0 0 20 4 39 0 96 100 13 0 0 100 100 5 100 0 76 82 50 0 11 50 93 0 5 80 82 80 83 100 8 0 0 0 0 0 0 0 0 0 13 8 9 81 13 0 83 0 0 0 0 13 88 14 0 0 0 0 0 7 0 100 0 0 0 90 100 6 19 0 5 0 8 11 0 3 32 48 2 90 0 80 5 2 3 9 21 0 0 0 0 0 75 4 0 73 47 100 0 0 65 0 14 24 18 50 17 44 33 7 100 86 0 0 0 0 0 83 17 14 14 13 11 9 6 71 62 50 58 77 19 56 50 17 8 24 86 36 88 0 43 33 69 100 89 69 36 71 0 86 55 100 10 0 94 77 46 75 85 58 54 67 72 16 48 50 0 80 20 57 62 58 38 71 100 100 80 96 61 25 0 0 13 53 0 0 0 30 0 86 0 0 0 83 44 17 0 0 10 20 18 20 17 0 8 83 86 86 88 89 91 94 29 38 38 33 14 0 31 50 0 92 76 14 64 0 13 43 67 31 0 11 31 57 29 0 14 45 0 0 0 0 4 54 20 15 33 36 33 26 53 4 48 10 20 0 38 37 39 53 7 0 0 20 4 39 Average 46 30 24 49 26 25 51 28 21
© Copyright 2026 Paperzz