ST. PAUL’S UNIVERSITY Assignment 2 Question 1 20 Marks Q.1.a What assumption do we make in regression in order to use standard error of estimate? Q.1.b A mathematics placement test is given to all entering freshmen at a small college. A student who receives a grade below 35 is denied admission to the regular mathematics course and placed a remedial class. The placement test scores and the final grades for 20 students who took the regular course were recorded follows: Placement Test Course Grade Placement Test Course grade 50 53 90 54 35 41 80 91 35 61 60 48 40 56 60 71 55 68 60 71 65 36 40 47 35 11 55 53 60 70 50 68 90 79 65 57 35 59 50 79 a. Find the equation of the regression line to predict course grades from placement test scores. b. Also calculate the correlation coefficient r. Solution: 1. a: What assumption do we make in regression in order to use standard error of estimate? Answer: 1. The observed values of Y are normally distributed around each estimated value of Yˆ . 2. The variance of the distributions around each possible value of Yˆ is the same. If this second assumption were not true, then the standard error at one point on the regression line could differ from the standard error at another point on the line. 1. b: Placement Test (x) 50 35 35 Course Grade (y) 53 41 61 xy x2 y2 2650 1435 2135 2500 1225 1225 2809 1681 3721 ST. PAUL’S UNIVERSITY 40 55 65 35 60 90 35 90 80 60 60 60 40 55 50 65 50 =1110 56 68 36 11 70 79 59 54 91 48 71 71 47 53 68 57 79 1173 a: Equation of Regression Line: y= a+bx Where n xy x y b 2 n x 2 x Substituting the values 20 67690 1110 1173 b= 2 20 67100 1110 1353800 1302030 1342000 1232100 51770 b 109900 b 0.4711 b= And So a y bx y y 1173 58.65 x x 1110 55.5 n 20 n 20 2240 3740 2340 385 4200 7110 2065 4860 7280 2880 4260 4260 1880 2915 3400 3705 3950 67690 1600 3025 4225 1225 3600 8100 1225 8100 6400 3600 3600 3600 1600 3025 2500 4225 2500 67100 3136 4624 1296 121 4900 6241 3481 2916 8281 2304 5041 5041 2209 2809 4624 3249 6241 74725 ST. PAUL’S UNIVERSITY a 58.65 0.4711 55.5 a 58.65 26.1461 a 32.5039 So, the required regression line is: Y a bX Y 32.5039 0.4711X b: Correlation Co efficient: n xy x y r 2 2 n x 2 x n y 2 y r 20 67690 1110 1173 20 67100 1110 20 74725 1173 2 r 2 1353800 1302030 1342000 1232100 1494500 1375929 51770 114153.1993 r 0.4535 r Question 2 15 Marks Groups 2-4 Frequency 18 4-6 24 6-8 47 8-10 80 10-12 102 12-14 66 14-16 40 16-18 21 18-20 15 Compute: i. ii. M.D Coefficient of Skew ness .Also interprets the result of Skewness. Solution: Groups Frequency x fx fx2 2-4 4-6 6-8 8-10 18 24 47 80 3 5 7 9 54 120 329 720 162 600 2303 6480 cumulative frequencies (c.f) 18 42 89 169 f X-X 139.7286 138.3048 176.8469 141.0160 ST. PAUL’S UNIVERSITY 10-12 12-14 14-16 16-18 18-20 Total 102 66 40 21 15 413 Mean: Mean x 11 13 15 17 19 …… 1122 858 600 357 285 4445 fx 4445 10.7627 f 413 (i) Mean Deviation: f X-X M .D f 1191.7975 2.8857 413 Mode: f m f1 h f m f1 f m f 2 102 80 xˆ 10 2 102 80 102 66 Mode xˆ l xˆ 10 22 2 =10.7586 22 36 Standard Deviation: S .D fx f S .D 53525 2 10.7627 413 2 fx f 2 S .D 129.6005 115.8357 S .D 13.7648 S .D 3.7101 (ii) Co efficient of skewness: 12342 11154 9000 6069 5415 53525 271 337 377 398 413 …… 24.2046 147.6618 169.4920 130.9833 123.5595 1191.7975 ST. PAUL’S UNIVERSITY Mean M od e Standard Deviation 10.7627 10.7586 Sk 0.0011 3.7101 Sk Interpretation: As the value of Sk is positive, so distribution is positive skewed.
© Copyright 2026 Paperzz