Automatic control 2. Analysis Lesson 6 (absolute) Stability Automatic Cintrol by Meiling CHEN 1 Stability • Internal behavior – The effect of all characteristic roots. • External behavior – The effect by cancellation of some transfer function poles. Automatic Cintrol by Meiling CHEN 2 Definition : A system is internal (asymptotic) stable, if the zero-input response decays to zero, as time approaches infinity, for all possible initial conditions. Asymptotic stable =>All the characteristic polynomial roots are located in the LHP (left-half-plan) Automatic Cintrol by Meiling CHEN 3 Definition : A system is external (bounded-input, bounded-output) stable, if the zero-state response is bounded, as time approaches infinity, for all bounded inputs.. bounded-input, bounded-output stable =>All the poles of transfer function are located in the LHP (left-halfplan) Asymptotic stable => BIBO stable BIBO stable=> Asymptotic stable Automatic Cintrol by Meiling CHEN 4 System response (i) First order system response (ii) Second order system response (iii) High order system response Automatic Cintrol by Meiling CHEN 5 First order dy a0 y b0 r dt b0 1 Y (s) R( s) y ( 0) s a0 s a0 let r (t ) Au (t ) b0 b0 A A a0 a0 1 Y (s) y (0) s s a0 s a0 Ab0 Ab0 a0t y (t ) u (t ) e y ( 0) e a 0 t a0 a0 Automatic Cintrol by Meiling CHEN 6 Second order d2y dy dr a1 a0 y b1 b0 r 2 dt dt dt b1s b0 sy(0) ( a1 1) y (0) Y (s) 2 R(s) s a1s a0 s 2 a1s a0 Three cases : (a) Two characteristic roots are real and distinct. (b) Two characteristic roots are equal. (c) Two characteristic roots are complex numbers. Automatic Cintrol by Meiling CHEN 7 Two characteristic roots are real and distinct. let y(0) y (0) 0 r (t ) u (t ) k3 k1 k2 Y ( s) s s1 s s2 s y (t ) (k1e s1t k 2 e s2t k3 )u (t ) Automatic Cintrol by Meiling CHEN 8 Two characteristic roots are equal let y(0) y (0) 0 r (t ) u (t ) k3 k1 k2 Y ( s) 2 ( s s1 ) s s1 s y (t ) (k1e s1t k 2tes1t k3 )u (t ) Automatic Cintrol by Meiling CHEN 9 Two characteristic roots are complex numbers let y(0) y (0) 0 r (t ) u (t ) k1 Y ( s) R( s) 2 2 (s ) n2 Y ( s) 2 R( s) 2 s 2n s n n n 1 2 Undamped natural frequency Damping ratio y (t ) 1 e nt 1 2 sin( n 1 2 t cos 1 ) Automatic Cintrol by Meiling CHEN 10 Automatic Cintrol by Meiling CHEN 11 Automatic Cintrol by Meiling CHEN 12 Automatic Cintrol by Meiling CHEN 13 Higher-order system 8s 2 5 Y ( s) 4 s 9s 3 37 s 2 81s 52 k3 s k 4 k1 k2 Y ( s) 2 s 1 s 4 s 4s 13 Dominant root nondominant root Automatic Cintrol by Meiling CHEN 14 Automatic Cintrol by Meiling CHEN 15 Automatic Cintrol by Meiling CHEN 16 Automatic Cintrol by Meiling CHEN 17 Stability testing Properties of the polynomial coefficients : • Differing algebraic signs 7 s 5s 3s 2s s 10 6 4 3 2 At least one RHP root • Zero-valued coefficients s 6 3s 5 2s 4 8s 2 3s 17 Has imaginary axis roots or RHP roots or both • All of the same algebraic sign, non zero 8s 5 6s 4 3s 3 2s 2 7 s 10 No direct information Automatic Cintrol by Meiling CHEN 18 Routh-Hurwitz testing P( s ) an s n an 1s n1 a1s a0 an 2 an 1 an an 3 1 an 1 sn an an 2 an 4 b sn 1 an 1 an 3 an 5 sn 2 b1 b2 sn 3 c1 c2 b3 c3 s 0 an 4 an 1 an an 5 b2 an 1 an 3b1 an 1b2 c1 b1 The number of RHP roots of P(s) is the number of algebra sign changes in the elements of the left column of the array. Automatic Cintrol by Meiling CHEN 19 Example 1 P ( s ) 2 s 4 3s 3 5 s 2 2 s 6 s 4 2 5 s 3 s 2 2 18 0 6 3 s 1 3 15 4 11 3 3 32 11 6 s0 6 Two roots in the RHP Automatic Cintrol by Meiling CHEN 20 Example 2 P ( s ) s 2 s 3s 4 s 1 4 3 4 1 3 1 s3 2 4 s2 1 1 s1 2 s0 1 s 2 no root in the RHP Automatic Cintrol by Meiling CHEN 21 Example 3 P ( s ) 3s 6 s 2 s 4 s 5 4 3 2 4 3 2 s3 6 4 s2 A 0 5 B ( 1) 5 s s1 s0 5 0 5 n s 2 5 5 s 1 10 s 0 5 n 移位次數移 至0消失為止 Two roots in the RHP Automatic Cintrol by Meiling CHEN 22 Example 4 P ( s ) s 5 2 s 4 8s 3 11s 2 16 s 12 s5 1 8 s4 2 11 12 s 3 s 2 s 1 s 0 16 factor 2.5 10 3 0 12 3s 12 2 0 Automatic Cintrol by Meiling CHEN 23 P ( s ) s 5 2 s 4 8s 3 11s 2 16 s 12 s5 1 8 s4 2 11 12 s 3 s 2 s 1 6 s 0 12 16 2.5 10 3 12 d 2 (3s 12) 6 s ds no root in the RHP Automatic Cintrol by Meiling CHEN 24 Example 5 R(s) + - k s 10 s 2 2 10 Y (s ) 1 s2 Y ( s) 10k R( s) s( s 2 s 10)( s 2) 10k Automatic Cintrol by Meiling CHEN 25
© Copyright 2026 Paperzz