LeT 116C Jack-Up KFELS B-Class Jack-Up

LeT 116C Jack-Up
KFELS B-Class Jack-Up
PHASE 2 BENCHMARKING OF ISO 19905-1
Report No: 709-J-IO-RPT-001
10/14/2011
11/22/2010
Date
1
0
Rev.
PREPARED FOR:
ISO Benchmark Panel
c/o Mr. John Stiff
© 2010 Bennett & Associates, L.L.C.
Add requested clarification statement
Issued for Client Use
Description
JV
DH
Prepared by
PREPARED BY:
Bennett & Associates
5177 Richmond Ave, Suite 1188
Houston, TX 77056
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
TABLE OF CONTENTS
1.
EXECUTIVE SUMMARY ..............................................................................................1
2.
INTRODUCTION AND METHODOLGY .....................................................................2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
BASIC SOIL FOUNDATION CONDITIONS ............................................................... 2
DESCRIPTION OF THE KFELS B-CLASS JACK-UP ................................................ 2
DESCRIPTION OF THE LET 116C JACK-UP ............................................................. 3
ENVIRONMENTAL CRITERIA ................................................................................... 5
LEG STRUCTURE AND MATERIAL SPECIFICATION ........................................... 7
STRUCTURAL MODELLING .................................................................................... 11
CALCULATION OF LOADS....................................................................................... 14
DYNAMICS .................................................................................................................. 14
HULL SWAY EFFECTS .............................................................................................. 14
3.
INTERMEDIATE ANALYSIS RESULTS AND COMMENTS ..................................16
3.1
3.2
3.3
HYDRODYNAMIC COEFFICIENTS ......................................................................... 16
WIND AREAS .............................................................................................................. 17
LEG PENETRATION AND FOUNDATION CAPACITY ......................................... 19
4.
ALIGNMENT-POINTS RESULTS AND COMMENTS..............................................23
4.1
4.2
4.3
4.4
4.5
LEG DRAG COEFFICIENT......................................................................................... 23
HULL WIND AREAS................................................................................................... 24
FOUNDATION ANALYSIS ........................................................................................ 25
DAF CALCULATIONS................................................................................................ 26
FOOTING REACTIONS .............................................................................................. 28
5.
ANALYSIS RESULTS FOR KFELS B-CLASS JACK-UP .........................................30
5.1
5.2
SAND CASE FOR KFELS B-CLASS JACK-UP ........................................................ 30
CLAY CASE FOR KFELS B-CLASS JACK-UP ........................................................ 33
6.
ANALYSIS RESULTS FOR LET 116C JACK-UP ......................................................37
6.1
6.2
SAND CASE FOR LET 116C JACK-UP ..................................................................... 37
CLAY CASE FOR LET 116C JACK-UP ..................................................................... 40
7.
CONCLUSIONS.............................................................................................................44
8.
REFERENCES ...............................................................................................................45
APPENDIX A: KFELS B-CLASS Jack-up Hydrodynamic Coefficient Calculations............46
APPENDIX B: LET 116C Jack-Up Hydrodynamic Coefficient Calculations........................49
APPENDIX C: KFELS B-CLASS Jack-Up Partial Sacs Fem Listing...................................52
APPENDIX D: LET 116C Jack-Up Partial Sacs Fem Listing ...............................................55
709-J-IO-RPT-001 ©
2010 Bennett &
Associates, L.L.C.
Page ii
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
LIST OF TABLES
Table 1.1 – Overall Scope of Work.......................................................................................... 1
Table 2.1 – Clay Soil Properties............................................................................................... 2
Table 2.2 – Sand Soil Properties .............................................................................................. 2
Table 2.3 – KFELS B-Class Jack-up Principal Dimensions.................................................... 3
Table 2.4 – KFELS B-Class Jack-up Hull and Leg Weights ................................................... 3
Table 2.5 – LeT 116C Jack-up Principal Dimensions ............................................................. 4
Table 2.6 – LeT 116C Jack-up Hull and Leg Weights............................................................. 4
Table 2.7 – KFELS B-Class Jack-up Environmental Conditions ............................................ 5
Table 2.8 – LeT 116C Class Jack-up Environmental Conditions (Sand Case)....................... 5
Table 2.9 – LeT 116C Class Jack-up Environmental Conditions (Clay Case) ....................... 6
Table 2.10 – KFELS B-Class Jack-up Leg Member Minimum Yield Properties.................... 7
Table 2.11 – LeT 116C Class Jack-up Leg Member Minimum Yield Properties .................. 9
Table 3.1 – KFELS B-Class Jack-up Hydrodynamic Coefficients........................................ 16
Table 3.2 – LeT 116C Class Jack-up Hydrodynamic Coefficients....................................... 17
Table 3.3 – KFELS B-Class Jack-up Hull Wind Area........................................................... 17
Table 3.4 – LeT 116C Jack-up Hull Wind Area .................................................................... 18
Table 3.5 – LeT 116C Jack-up Hull Wind Area (GM’s Wind Area)..................................... 18
Table 3.6 – KFELS B-Class Jack-up Sand Case.................................................................... 19
Table 3.7 – KFELS B-Class Jack-up Clay Case .................................................................... 20
Table 3.8 – LeT 116C Jack-up Sand Case ............................................................................. 21
Table 3.9 – LeT 116C Jack-up Clay Case.............................................................................. 22
Table 4.1 – Leg Drag Coefficient (KFELS B-Class Jack-up)................................................ 23
Table 4.2 – Leg Drag Coefficient (LeT 116C Jack-up) ......................................................... 23
Table 4.3 – Hull Wind Areas (KFELS B-Class Jack-up) ...................................................... 24
Table 4.4 – Hull Wind Areas (LeT 116C Jack-up) ................................................................ 24
Table 4.5 – Penetration and Spudcan Fixities-Sand Case (KFELS B-Class Jack-up)........... 25
Table 4.6 – Penetration and Spudcan Fixities-Clay Case (KFELS B-Class Jack-up) ........... 25
Table 4.7 – Penetration and Spudcan Fixities-Sand Case (LeT 116C Jack-up) .................... 25
Table 4.8 – Penetration and Spudcan Fixities-Clay Case (LeT 116C Jack-up)..................... 26
Table 4.9 – DAF Calculations-Sand Case (KFELS B-Class Jack-up)................................... 26
Table 4.10 – DAF Calculations-Clay Case (KFELS B-Class Jack-up) ................................. 26
Table 4.11 – DAF Calculations (LeT 116C Jack-up) ............................................................ 27
Table 4.12 – Footing Reactions-Sand Case (KFELS B-Class Jack-up) ................................ 28
Table 4.13 – Footing Reactions-Clay Case (KFELS B-Class Jack-up)................................. 28
Table 4.14 – Footing Reactions-Sand Case (LeT 116C Jack-up) .......................................... 29
Table 4.15 – Footing Reactions-Clay Case (LeT 116C Jack-up) .......................................... 29
Table 5.1 – Environmental Loads .......................................................................................... 30
Table 5.2 – Global Footing Reactions.................................................................................... 30
Table 5.3 – Overturning Stability Checks.............................................................................. 31
Table 5.4 – Preload Capacity Check ...................................................................................... 31
Table 5.5 – Leg Member Strength Check .............................................................................. 31
Table 5.6 – Jacking System Strength Check .......................................................................... 32
Table 5.7 – Bearing Capacity/Sliding Utilizations (Sand Case) ............................................ 33
Table 5.8 – Environmental Loads .......................................................................................... 33
Table 5.9 – Global Footing Reactions.................................................................................... 34
709-J-IO-RPT-001 ©
2010 Bennett &
Associates, L.L.C.
Page iii
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Table 5.10 – Overturning Stability Checks............................................................................ 34
Table 5.11 – Preload Capacity Check .................................................................................... 34
Table 5.12 – Leg Member Strength Check ............................................................................ 35
Table 5.13 – Jacking System Strength Check ........................................................................ 35
Table 5.14 – Bearing Capacity/Sliding Utilizations (Clay Case)........................................... 36
Table 6.1 – Environmental Loads .......................................................................................... 37
Table 6.2 – Global Footing Reactions.................................................................................... 37
Table 6.3 – Overturning Stability Checks.............................................................................. 38
Table 6.4 – Preload Capacity Check ...................................................................................... 38
Table 6.5 – Leg Member Strength Check .............................................................................. 38
Table 6.6 – Jacking System Strength Check .......................................................................... 39
Table 6.7 – Bearing Capacity/Sliding Utilizations (Sand Case) ............................................ 40
Table 6.8 – Environmental Loads .......................................................................................... 40
Table 6.9 – Global Footing Reactions.................................................................................... 41
Table 6.10 – Overturning Stability Checks............................................................................ 41
Table 6.11 – Preload Capacity Check .................................................................................... 41
Table 6.12 – Leg Member Strength Check ............................................................................ 42
Table 6.13 – Jacking System Strength Check ........................................................................ 42
Table 6.14 – Bearing Capacity/Sliding Utilizations (Clay Case)........................................... 43
LIST OF FIGURES
Figure 2.1 – KFELS B-Class Jack-up Leg Chord Section....................................................... 8
Figure 2.2 – LeT 116C Jack-up Leg Chord Section .............................................................. 10
Figure 2.3 – KFELS B-Class Jack-up SACS Finite Element Model..................................... 12
Figure 2.4 – LeT 116C Jack-up SACS Finite Element Model .............................................. 13
Figure 5.1 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 32
Figure 5.2 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 36
Figure 6.1 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 39
Figure 6.2 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 42
709-J-IO-RPT-001 ©
2010 Bennett &
Associates, L.L.C.
Page iv
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
1.
EXECUTIVE SUMMARY
ISO 19905-1 “Petroleum and natural gas industries – Site-specific assessment of mobile
offshore units – Part 1: Jack-Ups” has been developed from SNAME bulletin 5-5A
(SNAME), but has undergone significant modification in structure, and some content change,
during its development. Before 19905-1 will be released as a Draft International Standard
(DIS), it will be necessary to ensure that the document is both complete and produces results
that would be expected. As a first step to achieving this, a three-phase scope of work has
been developed to give an overall understanding of the benchmarking process. The purpose
of the Phase 2 study is to undertake a complete quantitative check of ISO methodology to
verify that the results are in reasonable compliance with SNAME T&R 5-5A Rev. 3, and to
assess possible areas that may have room for misinterpretation
Four separate consultants are to study four different jack-ups, as shown in Table 1-1.
Company
Rig 1
Standard
Rig 2
Standard
Global
Maritime
GL Noble
Denton
Bennett &
Associates
116C
ISO & SNAME
RGV
ISO
Keppel B-Class
ISO & SNAME
RGV
ISO & SNAME
Keppel B-Class
ISO
116C
ISO
GustoMSC
CJ 62
ISO & SNAME
--
--
Table 1.1 – Overall Scope of Work
The assessment has used adjusted leg-to-hull connection stiffness and other generic
parameters of KeppelFELS B-Class jackup units. The results presented herein are for the
purposes of benchmarking alone and are not representative of KeppelFELS B-Class jackup
units.
The work performed by Bennett & Associates (BASS) was as the secondary reviewer of the
proposed guidelines, with Global Maritime (GM) and GL Noble Denton having final say on
the various alignment points for the work on the 116C and the B-Class jack ups, respectively.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 1
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
2.
INTRODUCTION AND METHODOLGY
2.1
BASIC SOIL FOUNDATION CONDITIONS
The sand and clay soil foundation cases provided by the Benchmarking Panel were
investigated for the jack-ups. The soil properties are tabulated in Table 2.1 and Table 2.2.
Clay Soil Properties Used for Foundation Analysis
Penetration
(m)
0.00
19.00
29.00
36.50
45.00
Penetration
(ft)
0.0
62.3
95.1
119.8
147.6
Unit
Weight
(kN/m3)
4.00
5.80
5.80
5.80
8.00
Unit
Weight
(lb/ft3)
25
37
37
37
51
Cu
(kN/m2)
2.4
27.3
40.5
50.3
67.0
Cu
(k/ft2)
0.05
0.57
0.85
1.05
1.40
Cu (psi)
0.35
3.96
5.87
7.30
9.72
Shear
Modulus,
G
(MPa)
23.1
31.6
37.9
62.8
G
(k/ft2)
0
482
660
792
1312
Table 2.1 – Clay Soil Properties
Sand Soil Properties Used for Foundation Analysis
γ’
11
φ
34o
δ
29o
Relative density in sands
60%
Water Content
22%
Poisons Ratio
0.2
d50
0.095
d90
0.15
Shear modulus G
23765 * SQRT[Vswl / (101.3 * A)]
kN/m3
mm
mm
kPa
Table 2.2 – Sand Soil Properties
2.2
DESCRIPTION OF THE KFELS B-CLASS JACK-UP
The KFELS B-Class jack-up has three triangular, tubular reversed ‘K’ trussed legs with split
tube, double-sided rack chords. The legs of the unit are guided through the hull by rigid
guide structures located at the base of the hull and at the top of the elevating system. The
unit has twelve (12) pinion gears per leg for elevating the hull. A Self-Positioning Fixation
System (SPFS) is used to support the unit when elevated.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 2
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The principal dimensions of the KFELS B-Class jack-up are as given in the table below.
Length Overall
68.6 m
Breadth Overall
63.4 m
Depth of Hull (side)
7.8 m
Leg Length
157.6 m
Longitudinal Leg Spacing
39.3 m
Transverse Leg Spacing
43.3 m
Spudcan Diameter
13.9 m
Spudcan Height
5.8 m
Table 2.3 – KFELS B-Class Jack-up Principal Dimensions.
The weights used in the analysis were as follows:
Total Elevated Hull Weight
10,070 t
LCG1 (ft)
0.0
TCG2 (ft)
0.0
Total Leg Weight3
1.
2.
3.
3,348 t
Longitudinal center of gravity (LCG) measured positive aft of center of legs.
Transverse center of gravity (TCG) measured from rig centerline, positive starboard.
157.6 m total leg length.
Table 2.4 – KFELS B-Class Jack-up Hull and Leg Weights
2.3
DESCRIPTION OF THE LET 116C JACK-UP
The Atwood Vicksburg jack-up drilling unit has three four-chord, tubular ‘K’ trussed legs
with ‘tear-drop’ single-sided rack chords. The legs of the unit are guided through the hull by
rigid guide structures located at the base of the hull and at the top of the jack house. The unit
has sixteen (16) pinion gears per leg for elevating the hull.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 3
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The principal dimensions of the LeT 116C unit are as given in the table below.
Length Overall
74.1 m
Breadth Overall
62.8 m
Depth of Hull (side)
7.9 m
Leg Length for Sand Case
104.5 m
Leg Length for Clay Case
145.4 m
Longitudinal Leg Spacing
39.3 m
Transverse Leg Spacing
43.3 m
Spudcan Diameter
14.0 m
Spudcan Height
7.3 m
Table 2.5 – LeT 116C Jack-up Principal Dimensions
The weights used in the analysis were as follows:
Total Elevated Hull Weight
6,396 t
LCG1 (ft)
0.0
TCG2 (ft)
0.0
Total Leg Weight3
1.
2.
3.
3,284 t
Longitudinal center of gravity (LCG) measured positive aft of center of legs.
Transverse center of gravity (TCG) measured from rig centerline, positive starboard.
145.4 m total leg length.
Table 2.6 – LeT 116C Jack-up Hull and Leg Weights
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 4
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
2.4
ENVIRONMENTAL CRITERIA
Environmental extremes for sand and clay cases are as follows:
Case
Sand
Clay
Water Depth (m)
106.7
70
Hmax (m)
13.1
16.8
Tass (s)
11.7
13.3
Hs (m)
7
9
Tp (s)
13
14.7
Current (m/s)
0
0
Storm surge and tide (m)
4.6
4.6
Wind Speed (m/s)
51.4
51.4
Airgap (m)
15.2
15.2
Table 2.7 – KFELS B-Class Jack-up Environmental Conditions
Case
Sand
Water Depth (m)
64.0
Hmax (m)
16.7
Tass (s)
12.1
Hs (m)
9.0
Tp (s)
13.1
Surface Current (m/s)
1.50
Mid-depth Current (m/s)
1.50
75% Below Surface Current (m/s)
1.40
1 m above seabed Current (m/s)
0.9
Storm surge and tide (m)
21.0
Wind Speed (m/s)
35.0
Airgap (m)
20.1
Table 2.8 – LeT 116C Class Jack-up Environmental Conditions (Sand Case)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 5
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Case
Clay
Water Depth (m)
76.2
Hmax (m)
11.3
Tass (s)
10.0
Hs (m)
6.4
Tp (s)
11.1
Surface Current (m/s)
0.75
Mid-depth Current (m/s)
0.69
Bottom Current (m/s)
0.64
Storm surge and tide (m)
2.5
Wind Speed (m/s)
31.4
Airgap (m)
18.9
Table 2.9 – LeT 116C Class Jack-up Environmental Conditions (Clay Case)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 6
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
2.5
LEG STRUCTURE AND MATERIAL SPECIFICATION
The design minimum yield stress values of the legs for KFELS B-Class Jack-up are
as follows:
Item
Chord (tube and rack)
Diagonal and Horizontal
Brace Member
Diagonal and Horizontal
Brace Member
Internal Span Breaker
Dimensions
Yield Stress (ksi)
See Figure 2.1
100
85/8” O.D.  1.5” w.t. pipe
up to 162.1 ft above can tip.
85/8” O.D.  1.25” w.t. pipe
above 162.1 ft.
85/8” O.D.  1.25” w.t. pipe
up to 162.1 ft above can tip.
85/8” O.D.  1.0” w.t. pipe
above 162.1 ft.
63/8” O.D.  0.432” w.t. pipe
65
65
35
Table 2.10 – KFELS B-Class Jack-up Leg Member Minimum Yield Properties
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 7
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Area = 187.89 in2
I major = 5,50.89 in4
I minor = 3,03.41 in4
Figure 2.1 – KFELS B-Class Jack-up Leg Chord Section
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 8
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The design minimum yield stress values of the legs for LeT 116C Class Jack-up are
as follows:
Item
Dimensions
70
Chord Back Plate
Chord Side Plate
Yield Stress (ksi)
See Figure 2.2
70
70
Chord Rack
12.75” O.D. x 1.00” w.t. Pipe
up to 142 ft above can tip
Horizontal Braces
12.75” O.D. x 0.50” w.t. Pipe
from 142 ft to 175.55 ft
12.75” O.D. x 0.75” w.t. Pipe
from 175.55 ft to 343.3 ft
85
12.75” O.D. x 0.50” w.t. Pipe
from 343.3 ft to 410.9 ft
12.75” O.D. x 1.00” w.t. Pipe
up to 142 ft above can tip
Diagonal Braces
12.75” O.D. x 0.50” w.t. Pipe
from 142 ft to 175.55 ft
12.75” O.D. x 0.75” w.t. Pipe
from 175.55 ft to 343.3 ft
85
12.75” O.D. x 0.50” w.t. Pipe
from 343.3 ft to 410.9 ft
Internal Span Breaker
9” O.D. x 0.375” w.t. Pipe
85
Table 2.11 – LeT 116C Class Jack-up Leg Member Minimum Yield Properties
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 9
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Figure 2.2 – LeT 116C Jack-up Leg Chord Section
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 10
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
2.6
STRUCTURAL MODELLING
The global and detailed response of the unit under static and environmental loads was
evaluated by performing a detailed Finite Element analysis of the structure and foundation.
The capacity of the unit was assessed based on Ultimate Limit State methodology as
described in the ISO 19905-1, (i.e., factored loads and factored ultimate capacities). The
effects of hull side-sway (P-delta) and dynamic amplification were included in the analysis.
A detailed structural model of the leg and of the surrounding supporting structure was made
using SACS finite element software. The assumptions made in the Finite Element (FE)
structural modeling are described below.
 The leg chords were modeled by beam elements with appropriate shear and bending
properties. The axial stiffness contribution of the rack teeth was ignored in the
strength assessment; however, 10% of the rack tooth area was assumed in the global
response calculation. Braces were also modeled as tubular beam elements.
 The jack frame was modeled by beam elements with appropriate section properties.
The leg guides were modeled by spring elements with freedoms in the appropriate directions
giving reaction forces corresponding to guides reacting against the rack teeth.
For LeT 116C Jack-up the pinions were modelled in a similar fashion giving the appropriate
restraint and stiffness.
For KFELS B-Class Jack-up the Self-Positioning Fixation Systems (SPFS) were modeled in
a similar fashion giving the appropriate restraint and stiffness. Figure 2.3 shows the KFELS
B-Class Jack-up SACS Finite Element model. Figure 2.4 shows the LeT 116C Jack-up
SACS Finite Element model.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 11
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Figure 2.3 – KFELS B-Class Jack-up SACS Finite Element Model
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 12
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Figure 2.4 – LeT 116C Jack-up SACS Finite Element Model
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 13
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
2.7
CALCULATION OF LOADS
Wave and current loadings at each storm heading were automatically computed using the
SEASTATE Program of the SACS finite element analysis software.
Forces were computed using Morison’s equation and wave particle kinematics based on
Stokes Fifth Order Wave Theory. Wind forces were computed using the formulae and
coefficients given in the ISO 19905-1. The wave and current forces were factored by the
kinematics and blockage factors.
Benchmark Panel instructed that the wave kinematics/spreading reduction factor (Hdet to
Hmax) of 0.86 was to be used for all the cases. To account for blockage effects of the leg, a
current blockage factor has been derived in accordance with the ISO 19905-1. An average
blockage factor (i.e., reduction in current velocity) of 0.91 was used for KFELS B-Class
Jack-up and 0.77 for LeT 116C Jack-up.
2.8
DYNAMICS
The inertial loadset is derived from random wave time domain dynamic analysis; two DAF's
are calculated, one for the base shear (BS) and one for the overturning moment (OTM). The
applied inertial loadset included the inertial base shear and the inertial overturning moment.
This is accomplished by a combination of lateral force acting on the hull VCG level and
correcting moment applied as a couple to the hull. 80% of initial foundation fixity was
included in the random wave time domain dynamic analysis.
2.9
HULL SWAY EFFECTS
The combination of vertical (gravity) loads and the side sway of the hull result in a secondary
bending moment (P-delta moment), which is also included in the SACS analysis. The Pdelta moment increases both the vertical footing reaction (due to increased overturning
moment) and the moment at the lower guide due to the offset of the footing induced by hull
sway.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 14
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
P-delta effects are included as follows:
P-delta Moment = Hull Weight  Lateral Hull Displacement
The P-delta force is applied at the hull VCG level, giving the correct overturning moment
and lower guide bending moment. This force is calculated as follows:
P-delta Force =
P  delta Moment
Distance from footing to hull VCG
Point loads were added to the hull structure to give the correct hull weight and center of
gravity. The analysis was run twice, first to calculate the hull sway, and then repeated
including the additional overturning moments due to hull sway.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 15
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
3.
INTERMEDIATE ANALYSIS RESULTS AND COMMENTS
3.1 HYDRODYNAMIC COEFFICIENTS
For all the storm cases, the hydrodynamic coefficients were calculated for the legs in
accordance with the methodology described in the ISO 19905-1. The legs were assumed to
have a marine growth level of 12.5 mm (thickness). Rough and smooth tubular members
were assumed to have drag coefficients of 1.0 and 0.65 respectively.
Rough members and marine growth extends below MSL+2 m and smooth clean members are
assumed above.
The resulting drag coefficients are presented in Table 3.1 and 3.2. Note that the heading
directions are defined as counter clockwise. A 0 degree heading is taken as from stern to
bow.
Flow Direction
(0 is flow on Apex)
Rough CdD (m)
(below MSL+2 m)
Smooth CdD (m)
(above MSL+2 m)
00
4.562
3.201
4.655
3.305
4.562
3.201
4.655
3.305
4.562
3.201
4.655
3.305
4.562
3.201
3.988
3.637
0
0
30
0
60
0
90
0
120
0
150
0
180
2
2
CmD (m )
all flow directions
Table 3.1 – KFELS B-Class Jack-up Hydrodynamic Coefficients
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 16
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Flow Direction
(0 is flow on Apex)
Rough CdD (m)
(below MSL+2 m)
Smooth CdD (m)
(above MSL+2 m)
00
10.829
9.188
300
9.961
8.486
600
9.961
8.486
900
10.829
9.188
1200
9.961
8.486
1500
9.961
8.486
1800
9.914
9.188
CmD2 (m2)
all flow directions
9.282
8.968
0
Table 3.2 – LeT 116C Class Jack-up Hydrodynamic Coefficients
3.2 WIND AREAS
The hull wind areas with center of effort, given in Table 3.3 and Table 3.4 below, were
calculated as specified in the ISO 19905-1. Note that all areas include the shape coefficients.
The center of effort values are reported relative to the keel. The heading directions are
defined as counter clockwise. A 0 degree heading is taken as from stern to bow.
Heading
(degree)
Area (m2)
C of E (m)
0
30
60
90
120
150
180
2,186
2,048
1,842
1,946
2,077
1,921
1,781
21.03
21.64
22.1
20.57
19.81
21.49
23.47
Table 3.3 – KFELS B-Class Jack-up Hull Wind Area
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 17
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Heading
(degree)
Area (m2)
C of E (m)
0
30
60
90
120
150
180
1,401
1,341
1,331
1,455
1,528
1,438
1,359
15.03
15.46
15.38
14.37
13.83
14.35
15.02
Table 3.4 – LeT 116C Jack-up Hull Wind Area
Bennett & Associates (BASS) and Global Maritime (GM) agreed to use GM’s hull wind
area, which was based on wind test, for this analysis. Global Maritime’s hull wind areas are
given in Table 3.5. All areas include the shape coefficients. The centers of effort (C of E) are
reported relative to the keel. A 0o heading is taken as bow-on, a 90o heading as port-on, etc.
Example of Area ID description: For example, area A1 is the hull wind area and area A2 is
the wind area for the drill package.
Heading
(deg)
0
30
60
90
120
150
180
Area ID
Area Cs
(ft2)
C of E
(ft)
A1
11,248
36.9
A2
1,723
148.2
B1
9,688
35.9
B2
3,867
105.1
C1
9,494
33.4
C2
3,642
103.3
D1
D2
E1
E2
F1
F2
G1
G2
9,139
3,146
8,956
3,580
9,386
4,024
9,214
3,250
30.2
100.1
34.6
104.8
37.7
103.1
34.5
101.7
Table 3.5 – LeT 116C Jack-up Hull Wind Area (GM’s Wind Area)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 18
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
3.3 LEG PENETRATION AND FOUNDATION CAPACITY
The penetrations and foundation capacities, given in Table 3.6 to Table 3.9 below, were
calculated as specified in the ISO 19905-1.
Rig Physical attributes
Penetration
V-H Envelope
Calculation
Preload footing reaction, VL
Spudcan area, A
Spudcan volume, V
Tip to max. area length
Tip penetration depth
Laterally projected area, As
Interface friction angle, 
Utilisation origin 0,5QV/R,VH
G
Poisson ratio, v
Kd1
Kd2
Kd3
K1
K2
K3
Vertical capacity, Qv
Horizontal capacity, QH
Moment capacity, QM
Spudcan fixities
Foundation capacity
7,143
152.4
353.3
2.23
1.95
6.3
25
3.106
51,080
0.2
1.00
1.00
1.00
140,473
133,190
2,724,577
7,143
857
5,779
t
m2
m3
m
m
m
deg.
t
kPa
t/m
t/m
t-m/rad
t
t
t-m
Table 3.6 – KFELS B-Class Jack-up Sand Case
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 19
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Rig Physical attributes
Preload footing reaction, VL
Spudcan area, A
Spudcan volume, V
Tip to max. area length
Backfill
Hcav
Penetration
Tip penetration depth
Laterally projected area, As
Su at max area, Suo
Su at spudcan tip (Su,l)
Utilisation origin 0,5QV/R,VH
Qvnet
a
b
V-H Envelope
Calculation
Depth used to determine G
G
OCR
Poisson ratio, v
Kd1
Kd2
Kd3
K1
K2
K3
Vertical capacity, Qv
Horizontal capacity, QH
Moment capacity, QM
Spudcan fixities
Foundation capacity
7,143
152.4
353.3
2.23
1,532
4.3
34.1
43.7
44.2
47.1
3,772
6,062
0.91
0.289
33.6
35.7
1.0
0.5
2.00
2.06
2.41
405,952
279,138
15,837,345
8,675
2,195
12,863
t
m2
m3
m
t
m
m
m2
kPa
kPa
t
t
m
MPa
t/m
t/m
t-m/rad
t
t
t-m
Table 3.7 – KFELS B-Class Jack-up Clay Case
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 20
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Rig Physical attributes
Penetration
V-H Envelope
Calculation
Spudcan fixities
Foundation capacity
Preload footing reaction, VL
Spudcan area, A
Spudcan volume, V
Tip to max. area length
Tip penetration depth
Laterally projected area, As
Interface friction angle, 
Utilisation origin 0,5QV/R,VH
G
Poisson ratio, v
Kd1
Kd2
Kd3
K1
K2
K3
Vertical capacity, Qv
Horizontal capacity, QH
Moment capacity, QM
5,245
143.6
382.8
3.2
2.7
8.5
25
2,281
47356
0.2
1.00
1.00
1.00
117,382
111,296
1,849,533
5,245
629
3,825
t
m2
m3
m
m
m
deg.
t
kPa
t/m
t/m
t-m/rad
t
t
t-m
Table 3.8 – LeT 116C Jack-up Sand Case
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 21
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Rig Physical attributes
Penetration
Preload footing reaction, VL
Spudcan area, A
Spudcan volume, V
Tip to max. area length
Backfill
Hcav
Tip penetration depth
V-H Envelope
Calculation
Spudcan fixities
Foundation capacity
Laterally projected area, As
Su at max area, Suo
Su at spudcan tip (Su,l)
Utilisation origin 0,5QV/R,VH
Qvnet
a
b
Depth used to determine G
G
OCR
Poisson ratio, v
Kd1
Kd2
Kd3
K1
K2
K3
Vertical capacity, Qv
Horizontal capacity, QH
Moment capacity, QM
5,209
143.6
382.8
3.2
885
3.4
28.8
50.4
36
40
2,650
4,728
0.76
0.29
27.6
30.4
1.0
0.5
1.97
2.05
2.40
330,481
228,950
12,278,036
6,094
1,774
9,216
t
m2
m3
m
t
m
m
m2
kPa
kPa
t
t
m
MPa
t/m
t/m
t-m/rad
t
t
t-m
Table 3.9 – LeT 116C Jack-up Clay Case
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 22
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
4.
ALIGNMENT-POINTS RESULTS AND COMMENTS
4.1 LEG DRAG COEFFICIENT
Company
Bennett and
Associates(BASS)
Item
CD*D (m)
CM.D2 (m2)
Rough
Smooth
4.61
3.26
3.99
3.64
Noble Denton
(ND)
CM.D2
CD*D
(m)
(m2)
5.189
3.657
4.313
4.056
% Difference
CD*D
1.13
1.12
CM.D2
1.08
1.12
Table 4.1 – Leg Drag Coefficient (KFELS B-Class Jack-up)
Company
Item
Rough
Smooth
Bennett and
Associates(BASS)
CD*D (m)
10.27
CM.D2 (m2)
9.28
8.74
8.97
Global
Maritime(GM)
CM.D2
CD*D
(m)
(m2)
11.00
11.40
8.93
10.70
% Difference
CD*D
CM.D2
1.07
1.23
1.02
1.19
Table 4.2 – Leg Drag Coefficient (LeT 116C Jack-up)
For LeT 116C Jack-up, in BASS calculation, the marine growth was ignored on gussets and
chord. In GM calculation, the marine growth was included on gussets and chord. GM agreed
to use the BASS calculated leg drag coefficient.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 23
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
4.2 HULL WIND AREAS
Bennett and
Associates(BASS)
Heading
(deg.)
0
30
60
90
120
150
180
Area (m2)
2186
2048
1842
1946
2077
1921
1781
C of E (m)
21.0
21.6
22.1
20.6
19.8
21.5
23.5
Noble
Denton(ND)
Area
C of E
(m2)
(m)
1680
21.8
1917
21.0
2024
20.0
1932
20.3
2024
20.0
1917
21.0
1680
21.8
%
Difference
of Wind
Area
0.77
0.94
1.10
0.99
0.97
1.00
0.94
Table 4.3 – Hull Wind Areas (KFELS B-Class Jack-up)
For LeT 116C Jack-up, BASS's hull wind area was calculated using the projected area
resulting from the wind direction being analyzed. GM's hull wind area analysis utilized a
linear profile based on 116C wind testing results. BASS agreed to use the GM's hull wind
area for this analysis. GM's LeT 116C Jack-up hull wind areas are shown below.
Heading
(deg)
0
30
60
90
120
150
180
Area ID
Area Cs
(ft2)
C of E
(ft)
A1
11,248
36.9
A2
1,723
148.2
B1
9,688
35.9
B2
3,867
105.1
C1
9,494
33.4
C2
3,642
103.3
D1
D2
E1
E2
F1
F2
G1
G2
9,139
3,146
8,956
3,580
9,386
4,024
9,214
3,250
30.2
100.1
34.6
104.8
37.7
103.1
34.5
101.7
Table 4.4 – Hull Wind Areas (LeT 116C Jack-up)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 24
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
4.3 FOUNDATION ANALYSIS
BASS
ND
%
Difference
1.95
1.95
1.00
Spudcan fixities K1 (t/m)
140,473
140,379
1.00
Spudcan fixities K2 (t/m)
133,190
133,100
1.00
Spudcan fixities K3 (t/m)
2,724,577
2,724,228
1.00
Sand Case
Penetration (m)
Table 4.5 – Penetration and Spudcan Fixities-Sand Case (KFELS B-Class Jack-up)
BASS
ND
%
Difference
34.1
34.1
1.00
Spudcan fixities K1 (t/m)
405,952
386,404
1.05
Spudcan fixities K2 (t/m)
279,138
265,331
1.05
Spudcan fixities K3 (t/m)
15,837,345
15,080,064
1.05
Clay Case
Penetration (m)
Table 4.6 – Penetration and Spudcan Fixities-Clay Case (KFELS B-Class Jack-up)
BASS
GM
%
Difference
2.7
2.7
1.00
Spudcan fixities K1 (t/m)
117,382
117,041
1.00
Spudcan fixities K2 (t/m)
111,296
110,972
1.00
Spudcan fixities K3 (t/m)
1,849,533
1,848,978
1.00
Sand Case
Penetration (m)
Table 4.7 – Penetration and Spudcan Fixities-Sand Case (LeT 116C Jack-up)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 25
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
BASS
GM
%
Difference
28.8
28.8
1.00
Spudcan fixities K1 (t/m)
330,481
330,108
1.00
Spudcan fixities K2 (t/m)
228,950
228,708
1.00
Clay Case
Penetration (m)
Spudcan fixities K3 (t/m)
12,278,036 12,267,018
1.00
Table 4.8 – Penetration and Spudcan Fixities-Clay Case (LeT 116C Jack-up)
4.4 DAF CALCULATIONS
Item
BASS
ND
% Difference
BS DAF(60 deg.)
1.58
1.73
0.91
OTM DAF(60 deg.)
1.86
2.08
0.89
BS DAF(90 deg.)
1.55
1.69
0.91
OTM DAF(90 deg.)
1.81
2.04
0.89
BS DAF(120 deg.)
1.58
1.66
0.95
OTM DAF(120 deg.)
1.91
1.99
0.96
Table 4.9 – DAF Calculations-Sand Case (KFELS B-Class Jack-up)
Item
BASS
ND
% Difference
BS DAF(60 deg.)
1.58
1.73
0.91
OTM DAF(60 deg.)
1.86
2.08
0.89
BS DAF(90 deg.)
1.55
1.69
0.91
OTM DAF(90 deg.)
1.81
2.04
0.89
BS DAF(120 deg.)
1.58
1.66
0.95
OTM DAF(120 deg.)
1.91
1.99
0.96
Table 4.10 – DAF Calculations-Clay Case (KFELS B-Class Jack-up)
BASS agreed to use the ND's DAF values for this analysis.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 26
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Item
BASS
GM
% Difference
BS DAF (Sand)
1.05
1.24
0.85
OTM DAF (Sand)
1.12
1.40
0.80
BS DAF (Clay)
1.16
1.14
1.02
OTM DAF (Clay)
1.27
1.35
0.94
Table 4.11 – DAF Calculations (LeT 116C Jack-up)
BASS agreed to use the GM's DAF values for this analysis.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 27
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
4.5 FOOTING REACTIONS
Heading
(deg)
BASS
60
90
120
Leg
Fh (t)
ND
Fv (t)
M (t-m)
Fh (t)
Fv (t)
BASS
ND
BASS
ND
BASS
ND
Fh
Fv
M
M (t-m)
Bow
263
5,687
3,301
258
5,723
5,137
1.02
0.99
0.64
Stbd
254
1,453
3,325
282
1,320
3,021
0.9
1.1
1.1
Port
252
5,781
3,127
260
5,822
4,855
0.97
0.99
0.64
Bow
276
4,309
5,194
286
4,291
6,210
0.97
1
0.84
Stbd
265
1,809
4,042
296
1,615
3,624
0.89
1.12
1.12
Port
228
6,803
0
213
6,958
171
1.07
0.98
0
Bow
283
2,923
5,239
296
2,799
5,165
0.95
1.04
1.01
Stbd
272
2,827
5,211
300
2,692
5,074
0.91
1.05
1.03
Port
226
7,171
0
213
7,372
21
1.06
0.97
0
Table 4.12 – Footing Reactions-Sand Case (KFELS B-Class Jack-up)
Heading
(deg)
BASS
60
90
120
Leg
Fh (t)
ND
Fv (t)
M (t-m)
Fh (t)
Fv (t)
BASS
ND
BASS
ND
BASS
ND
Fh
Fv
M
M (t-m)
Bow
296
5,311
12,126
296
5,434
10,371
1
0.98
1.17
Stbd
294
2,239
12,914
341
1,924
14,046
0.86
1.16
0.92
Port
287
5,381
12,015
300
5,520
10,115
0.96
0.97
1.19
Bow
312
4,311
13,651
327
4,290
12,773
0.95
1
1.07
Stbd
300
2,492
13,326
343
2,204
14,057
0.88
1.13
0.95
Port
263
6,129
9618
264
6,386
6590
0.99
0.96
1.46
Bow
319
3,284
13,886
346
3,099
13,926
0.92
1.06
1
Stbd
311
3,210
13,852
350
3,019
13,968
0.89
1.06
0.99
Port
254
6,438
8194
243
6,759
3600
1.04
0.95
2.28
Table 4.13 – Footing Reactions-Clay Case (KFELS B-Class Jack-up)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 28
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Heading
(deg)
BASS
60
90
120
ND
BASS
GM
BASS
GM
BASS
GM
Fh
Fv
M
Leg
Fh (kN)
Fv (kN)
M (kN-m)
Fh (kN)
Fv (kN)
M (kN-m)
Bow
6,009
42,531
0
5,572
42,705
0
1.08
1
-
Stbd
5,592
-4,628
0
6,065
-4,502
0
0.92
1.03
-
Port
6,008
43,651
0
5,529
43,867
0
1.09
1
-
Bow
6,489
27,186
0
6,334
27,308
0
1.02
1
-
Stbd
5,659
-640
0
6,015
-614
0
0.94
1.04
-
Port
5,589
55,009
0
4,924
55,377
0
1.14
0.99
-
Bow
6,193
11,477
0
6,324
11,599
0
0.98
0.99
-
Stbd
6,200
10,326
0
6,315
10,450
0
0.98
0.99
-
Port
5,601
59,752
0
4,865
60,027
40
1.15
1
-
BASS
GM
BASS
GM
BASS
GM
Fh
Fv
M
Table 4.14 – Footing Reactions-Sand Case (LeT 116C Jack-up)
Heading
(deg)
BASS
60
90
120
ND
Leg
Fh (kN)
Fv (kN)
M (kN-m)
Fh (kN)
Fv (kN)
M (kN-m)
Bow
1,920
33,972
82,919
125
33,422
96,902
15.36
1.02
0.86
Stbd
1,653
17,878
84,816
249
22,053
96,075
6.64
0.81
0.88
Port
1,913
34,269
82,660
126
33,637
96,902
15.18
1.02
0.85
Bow
2,140
28,691
88,419
182
29,712
97,983
11.76
0.97
0.9
Stbd
1,825
19,083
85,828
144
22,829
97,252
12.67
0.84
0.88
Port
1,683
38,346
74800
169
36,592
97533
9.96
1.05
0.77
Bow
2,174
22,461
88,458
72
25,417
103,357
30.19
0.88
0.86
Stbd
2,157
22,092
88,409
63
25,070
103,332
34.24
0.88
0.86
Port
1,751
41,568
66085
133
38,654
103470
13.17
1.08
0.64
Table 4.15 – Footing Reactions-Clay Case (LeT 116C Jack-up)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 29
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
5.
ANALYSIS RESULTS FOR KFELS B-CLASS JACK-UP
5.1 SAND CASE FOR KFELS B-CLASS JACK-UP
The environmental base shears & overturning moments for the critical headings are given in
Table 5.1. The OTMs are given about the pinpoint.
Wave / Current
Wind
Storm
Heading
(deg)
Inertia
P-Delta
Total
BS
KN
OTM KNm
BS
KN
OTM
KN-m
BS
KN
OTM
KN-m
OTM
KN-m
BS KN
OTM KNm
60
5,318
757,273
1,293
124,228
944
134,167
141,887
7,554
1,157,555
90
5,211
743,563
1,377
132,097
950
137,381
141,887
7,537
1,154,928
120
5,318
757,273
1,414
134,770
933
133,422
142,497
7,664
1,167,962
Table 5.1 – Environmental Loads
The results of the global non-linear analysis, showing footing reactions, are below.
Storm
heading
(deg)
60
90
120
BS
Vertical
Moment
t
t
t-m
Bow
263
5,687
3,301
Stbd
254
1,453
3,325
Port
252
5,781
3,127
Bow
276
4,309
5,194
Stbd
265
1,809
4,042
Port
228
6,803
0
Bow
283
2,923
5,239
Stbd
272
2,827
5,211
Port
226
7,171
0
Leg ID
Table 5.2 – Global Footing Reactions
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 30
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The critical storm heading for overturning stability was determined to be 60o. The
overturning stability check was based on a hull weight of 10,070 t.
The table below
summarises the overturning stability check. A resistance factor of 1.05 has been applied.
Total OTM (KN-m)
Total Factored Righting Moment (KN-m )
Overturning Stability UC
1,157,555
1,463,045
0.79
Table 5.3 – Overturning Stability Checks
The storm loading direction giving the largest storm footing reaction was found to be 120o. A
resistance factor of 1.10 has been applied.
Maximum Storm Vertical Footing Reaction (KN)
Factored Preload Capacity at Footing (KN)
Preload UC
70,322
63,682
1.10
Table 5.4 – Preload Capacity Check
Leg member strength checks (chords and braces) were performed in accordance with
ISO/DIS 19905-1. Leg strength UC’s are given below.
UC
Heading/Leg
Leg - Chords
0.86
90o / Port
Leg – Diagonal and Horizontal Braces
0.42
90o / Port
Table 5.5 – Leg Member Strength Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 31
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The critical storm loading direction for jacking system strength was found to be 120o for the
port leg. The check was based on a factored ultimate capacity of 15,502 kips (68,956 KN).
Maximum SPFS Storm Vertical Load (KN)
44,799
Factored SPFS Ultimate Capacity (KN)
68,956
Jacking System UC
0.65
Table 5.6 – Jacking System Strength Check
Each spudcan foundation bearing capacity/sliding check and utilizations are given below.
Bearing Capacity Envelope
10,000
Unfactored Load Capacity
Factored Load Capacity
Factored Sliding Capacity
Unfactored Sliding Capacity
Bow Footing Reactions
STBD Footing Reactions
Port Footing Reaction
Origin
Capacity Vector for Bow Leg
Capacity Vector for STBD Leg
Capacity Vector for Port Leg
9,000
Vertical Capacity (tonnes)
8,000
7,000
6,000
5,000
4,000
Origin
3,000
2,000
1,000
0
0
100
200
300
400
500
600
700
800
900
1,000
Horizontal Capacity (tonnes)
Figure 5.1 – Spudcan Foundation Bearing Capacity/Sliding Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 32
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Leg
Bow
STBD
Port
Magnitude of Capacity Vector
2528 t
2229 t
2772 t
Magnitude of Force Vector
2595 t
1673 t
4071 t
1.03
0.75
1.47
UC
Table 5.7 – Bearing Capacity/Sliding Utilizations (Sand Case)
5.2 CLAY CASE FOR KFELS B-CLASS JACK-UP
The environmental base shears & overturning moments for the critical headings are given in
Table 5.23. The OTMs are given about the pinpoint.
Wave / Current
Wind
Inertia
P-Delta
Total
OTM
KN-m
OTM
KN-m
BS
KN
OTM
KN-m
605
82,792
86,236
8,605
1,131,951
732,030
599
83,244
88,584
8,578
1,128,842
745,047
574
78,994
91,988
8,660
1,141,725
Storm
Heading
(deg)
BS
KN
OTM
KN-m
BS
KN
OTM
KN-m
BS
KN
60
2,521
217,875
5,479
745,047
90
2,606
224,983
5,372
120
2,607
225,696
5,479
Table 5.8 – Environmental Loads
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 33
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The results of the global non-linear analysis, showing footing reactions, are given below.
Storm
heading
(deg)
60
90
120
BS
Vertical
Moment
(t)
(t)
(t-m)
Bow
296
5,311
12,126
Stbd
294
2,239
12,914
Port
287
5,381
12,015
Bow
312
4,311
13,651
Stbd
300
2,492
13,326
Port
263
6,129
9,618
Bow
319
3,284
13,886
Stbd
311
3,210
13,852
Port
254
6,438
8,194
Leg ID
Table 5.9 – Global Footing Reactions
The critical storm heading for overturning stability was determined to be 60o.
overturning stability check was based on a hull weight of 10,070 t.
The
The table below
summarises the overturning stability check. A resistance factor of 1.05 has been applied.
Total OTM (KN-m)
Total Factored Righting Moment (KN-m )
Overturning Stability UC
1,131,951
1,737,308
0.65
Table 5.10 – Overturning Stability Checks.
The storm loading direction giving the largest storm footing reaction was found to be 120o. A
resistance factor of 1.10 has been applied.
Maximum Storm Vertical Footing Reaction (KN)
Factored Preload Capacity at Footing (KN)
Preload UC
63,136
63,682
0.99
Table 5.11 – Preload Capacity Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 34
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Leg member strength checks (chords and braces) were performed in accordance with
ISO/DIS 19905-1. Leg strength UC’s are given below.
UC
Heading/Leg
Leg - Chords
0.69
90o / Port
Leg – Diagonal and Horizontal Braces
0.41
90o / Port
Table 5.12 – Leg Member Strength Check
The critical storm loading direction for jacking system strength was found to be 120o for the
Port leg. The check was based on a factored ultimate capacity of 15,502 kips (68,956 KN).
Maximum SPFS Storm Vertical Load (KN)
34,563
Factored SPFS Ultimate Capacity (KN)
68,956
Jacking System UC
0.50
Table 5.13 – Jacking System Strength Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 35
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Each spudcan foundation bearing capacity/sliding check and utilizations are given below.
Bearing Capacity Envelope
10,000
Unfactored Load Capacity
Factored Load Capacity
Factored Sliding Capacity
Unfactored Sliding Capacity
Bow Footing Reactions
STBD Footing Reactions
Port Footing Reaction
Origin
Capacity Vector for Bow Leg
Capacity Vector for STBD Leg
Capacity Vector for Port Leg
9,000
Vertical Capacity (tonnes)
8,000
7,000
6,000
5,000
4,000
Origin
3,000
2,000
1,000
0
0
500
1,000
1,500
2,000
2,500
3,000
Horizontal Capacity (tonnes)
Figure 5.2 – Spudcan Foundation Bearing Capacity/Sliding Check
Leg
Bow
STBD
Port
Magnitude of Capacity Vector
3,731 t
1,407 t
3,755 t
Magnitude of Force Vector
3,085 t
294 t
4,206 t
0.83
0.21
1.12
UC
Table 5.14 – Bearing Capacity/Sliding Utilizations (Clay Case)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 36
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
6.
ANALYSIS RESULTS FOR LET 116C JACK-UP
Full set of analysis results and any relevant comments on the results of the analyses. Use
Tables for this section.
6.1 SAND CASE FOR LET 116C JACK-UP
The environmental base shears & overturning moments for the critical headings are given in
Table 6.1. The OTMs are given about the pinpoint.
Wave / Current
Wind
Storm
Heading
(deg)
Inertia
P-Delta
Total
BS
KN
OTM
KN-m
BS
KN
OTM
KN-m
BS
KN
OTM
KN-m
OTM
KN-m
BS
KN
OTM
KN-m
60
12,903
676,025
1,607
158,015
3,097
270,410
101,092
17,607
1,205,541
90
13,027
681,593
1,566
151,328
3,126
272,637
97,851
17,719
1,203,410
120
13,171
691,199
1,662
162,867
3,161
276,480
103,751
17,994
1,234,298
Table 6.1 – Environmental Loads
The results of the global non-linear analysis, showing footing reactions, are given in below.
Storm
heading
(deg)
60
90
120
BS
Vertical
Moment
KN
KN
KN-m
Bow
6,009
42,531
0
Stbd
5,592
-4,628
0
Port
6,008
43,651
0
Bow
6,489
27,186
0
Stbd
5,659
-640
0
Port
5,589
55,009
0
Bow
6,193
11,477
0
Stbd
6,200
10,326
0
Port
5,601
59,752
0
Leg ID
Table 6.2 – Global Footing Reactions
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 37
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The critical storm heading for overturning stability was determined to be 60o.
overturning stability check was based on a hull weight of 6,396 t.
The
The table below
summarises the overturning stability check. A resistance factor of 1.05 has been applied.
Total OTM (KN-m)
Total Factored Righting Moment (KN-m )
Overturning Stability UC
1,205,541
1,024,432
1.18
Table 6.3 – Overturning Stability Checks
The storm loading direction giving the largest storm footing reaction was found to be 120o. A
resistance factor of 1.10 has been applied.
Maximum Storm Vertical Footing Reaction (KN)
Factored Preload Capacity at Footing (KN)
Preload UC
59,752
48,543
1.23
Table 6.4 – Preload Capacity Check
Leg member strength checks (chords and braces) were performed in accordance with
ISO/DIS 19905-1. Leg strength UC’s are given below.
UC
Heading/Leg
Leg - Chords
1.10
90o / Port
Leg – Diagonal and Horizontal Braces
1.21
120o / Port
Table 6.5 – Leg Member Strength Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 38
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The critical storm loading direction for jacking system strength was found to be 90o for the
port leg. The check was based on a factored ultimate capacity of 1,590 kips (7,075 KN).
Maximum Pinion Storm Vertical Load (KN)
6,736
Factored Pinion Ultimate Capacity (KN)
7,075
Jacking System UC
0.95
Table 6.6 – Jacking System Strength Check
Each spudcan foundation bearing capacity/sliding check and utilizations are given below
Bearing Capacity Envelope
10,000
Unfactored Load Capacity
Factored Load Capacity
Factored Sliding Capacity
Unfactored Sliding Capacity
Bow Footing Reactions
STBD Footing Reactions
Port Footing Reaction
Origin
Capacity Vector for Bow Leg
Capacity Vector for STBD Leg
Capacity Vector for Port Leg
9,000
Vertical Capacity (tonnes)
8,000
7,000
6,000
5,000
4,000
3,000
Origin
2,000
1,000
0
0
100
200
300
400
500
600
700
800
900
1,000
-1,000
Horizontal Capacity (tonnes)
Figure 6.1 – Spudcan Foundation Bearing Capacity/Sliding Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 39
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Leg
Bow
STBD
Port
Magnitude of Capacity Vector
1,324 t
1,503 t
1,696 t
Magnitude of Force Vector
2,146 t
2,811 t
3,855 t
1.62
1.87
2.27
UC
Table 6.7 – Bearing Capacity/Sliding Utilizations (Sand Case)
6.2 CLAY CASE FOR LET 116C JACK-UP
The environmental base shears & overturning moments for the critical headings are given in
Table 6.8. The OTMs are given about the pinpoint.
Wave / Current
Wind
Storm
Heading
(deg)
Inertia
P-Delta
Total
BS
KN
OTM
KN-m
BS
KN
OTM
KN-m
BS
KN
OTM
KN-m
OTM
KN-m
BS KN
OTM
KN-m
60
3,523
309,530
1,484
195,960
493
108,335
47,509
5,500
661,334
90
3,664
317,757
1,452
189,483
513
111,215
46,624
5,629
665,078
120
4,000
349,564
1,530
201,621
560
122,347
57,619
6,091
731,152
Table 6.8 – Environmental Loads
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 40
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
The results of the global non-linear analysis, showing footing reactions, are given below.
Storm
heading
(deg)
60
90
120
BS
Vertical
Moment
KN
KN
KN-m
Bow
1,920
33,972
82,919
Stbd
1,653
17,878
84,816
Port
1,913
34,269
82,660
Bow
2,140
28,691
88,419
Stbd
1,825
19,083
85,828
Port
1,683
38,346
74,800
Bow
2,174
22,461
88,458
Stbd
2,157
22,092
88,409
Port
1,751
41,568
66,085
Leg ID
Table 6.9 – Global Footing Reactions
The critical storm heading for overturning stability was determined to be 60o.
overturning stability check was based on a hull weight of 6,396 t.
The
The table below
summarizes the overturning stability check. A resistance factor of 1.05 has been applied.
Total OTM (KN-m)
Total Factored Righting Moment (KN-m )
Overturning Stability UC
661,334
1,359,630
0.49
Table 6.10 – Overturning Stability Checks
The storm loading direction giving the largest storm footing reaction was found to be 120o.
A resistance factor of 1.10 has been applied.
Maximum Storm Vertical Footing Reaction (KN)
Factored Preload Capacity at Footing (KN)
Preload UC
41,568
48,543
0.86
Table 6.11 – Preload Capacity Check
Leg member strength checks (chords and braces) were performed in accordance with
ISO/DIS 19905-1. Leg strength UC’s are given in below.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 41
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
UC
Heading/Leg
Leg - Chords
0.48
120o / Port
Leg – Diagonal and Horizontal Braces
0.48
120o / Port
Table 6.12 – Leg Member Strength Check
The critical storm loading direction for jacking system strength was found to be 120o for the
port leg. The check was based on a factored ultimate capacity of 1,590 kips (7075 KN).
Maximum Pinion Storm Vertical Load (KN)
3,396
Factored Pinion Ultimate Capacity (KN)
7,075
Jacking System UC
0.48
Table 6.13 – Jacking System Strength Check
The spudcan foundation bearing capacity/sliding checks and utilizations are given below.
Bearing Capacity Envelope
8,000
Unfactored Load Capacity
Factored Load Capacity
Factored Sliding Capacity
Unfactored Sliding Capacity
Bow Footing Reactions
STBD Footing Reactions
Port Footing Reaction
Origin
Capacity Vector for Bow Leg
Capacity Vector for STBD Leg
Capacity Vector for Port Leg
7,000
Vertical Capacity (tonnes)
6,000
5,000
4,000
3,000
Origin
2,000
1,000
0
0
500
1,000
1,500
2,000
2,500
Horizontal Capacity (tonnes)
Figure 6.2 – Spudcan Foundation Bearing Capacity/Sliding Check
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 42
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
Leg
Bow
STBD
Port
Magnitude of Capacity Vector
2,623 t
1,203 t
2,638 t
Magnitude of Force Vector
1,711 t
178 t
2,481 t
0.65
0.15
0.94
UC
Table 6.14 – Bearing Capacity/Sliding Utilizations (Clay Case)
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 43
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
7.
CONCLUSIONS
Although the ISO and SNAME results are similar, this could not have been achieved by the
parties acting independently.
Several checks were made on both units and normalization of results at that point of
calculation were needed to obtain similar results.
There are several areas where BASS feel there is insufficient guidance to achieve the same
level of risk as we would achieve using our methods of normal site assessment using
SNAME RP 5-A:
 Leg to hull connection – relative stiffness of all attachments.
 Chord robustness versus risk during unusual loading.
 Better chord to guide interaction and analysis.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 44
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
8.
REFERENCES
1. ISO/DIS 19905-1ISO/DIS 19905-1.
2. 2009-12-17 EMAIL FROM JOHN STIFF ENCL2 Benchmarking Sand Site soils
data.
3. 2009-12-17 EMAIL FROM JOHN STIFF ENCL3 Benchmark-clay.
4. SACS Software Program Version 5.2.01 – 2005 Engineering Dynamics Inc.
5. Cutdown NDA Phase 1 report to supply B-Class data.
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 45
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
APPENDIX A: KFELS B-CLASS Jack-up Hydrodynamic Coefficient Calculations
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 46
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 47
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 48
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
APPENDIX B: LET 116C Jack-Up Hydrodynamic Coefficient Calculations
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 49
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 50
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 51
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
APPENDIX C: KFELS B-CLASS Jack-Up Partial Sacs Fem Listing
LDOPT SFINOPFL+Z64.2
490.0
111.8
245.0
GLOBEN
OPTIONS
EN
SDUC
1 1
0
PTPTPTPT
PTPT
LCSEL ST
27
UCPART
0.00.6
.6
1.0 1.0
AMOD
AMOD
24 1.333 25 1.333 26 1.333 27 1.333 28 1.333 29 1.333 30 1.333
SECT
SECT CODMEMB
PRI198.189154.3 5292.93 4607.01 7.0
15.794110.056.8
SECT JK1MEMB
PRI817.0 356500.0340100.01550000. 72.9
130.0 384.0216.0
SECT JK2MEMB
PRI564.5 142000.0190800.01191000. 51.0
124.0 286.5144.0
SECT MEMBHBB
BOX
15.0 2.0 24.0 2.0
SECT MEMBL11
PRI558.0 1.000+099122000.1.000+09 380.0
144.0 1000.360.0
SECT MEMBL13
PRI662.1 1.000+091.318+071.000+09 385.6
300.0 1000.270.0
SECT MEMBL14
PRI837.361.000+091.685+071.000+09 418.0
480.0 1000.270.0
SECT MEMBL17
PRI819.721.000+091.750+071.000+09 406.0
480.0 1000.225.0
SECT MEMBL18
PRI662.1 1.000+091.318+071.000+09 385.0
480.0 1000.270.0
SECT MEMBL19
PRI243.0 1.000+092250000.1.000+09 270.0
72.0 1000.95.0
SECT MEMBL20
PRI243.0 1.000+092250000.1.000+09 270.0
72.0 1000.95.0
SECT MEMBLEG
PRI582.962723133.2.082+092.082+09 468.0
600.0 74.6 74.6
SECT MEMBLWL
PRI330.0 1.000+094354565.1.000+09 288.0
120.0 1000.180.0
SECT MEMBSMR
PRI1500.01.000+091.000+091.000+09 100.0
100.0 3000.3000.
SECT MEMBSS1
PRI276.841.000+094986476.1.000+09 404.0
120.0 1000.135.0
SECT MEMBSS2
PRI624.6 1.000+091.710+071.000+09 408.76
300.0 1000.270.0
SECT MEMBT10
PRI347.761.000+096710000.1.000+09 412.54
180.0 1000.135.0
SECT MEMBT11
PRI505.261.000+099090000.1.000+09 380.0
180.0 1000.270.0
SECT MEMBT12
PRI864.0 1.000+091.483+071.000+09 363.0
144.0 1000.540.0
SECT MEMBTR1
PRI243.2 1.000+092253058.1.000+09 272.0
120.0 1000.94.5
SECT MEMBTR2
PRI274.681.000+092420000.1.000+09 269.7
120.0 1000.126.0
SECT MEMBTR3
PRI531.841.000+098520000.1.000+09 362.6
300.0 1000.360.0
SECT MEMBTR4
PRI373.681.000+096250000.1.000+09 386.0
240.0 1000.225.0
SECT MEMBTR5
PRI463.681.000+098948000.1.000+09 412.0
240.0 1000.180.0
SECT MEMBTR6
PRI463.681.000+098948000.1.000+09 412.54
240.0 1000.180.0
SECT MEMBTR7
PRI297.0 1.000+095050000.1.000+09 400.0
72.0 1000.180.0
SECT MEMBTR8
PRI347.761.000+096710000.1.000+09 412.0
180.0 1000.135.0
SECT MEMBTR9
PRI390.3 1.000+097740000.1.000+09 416.0
216.0 1000.135.0
SECT PINMEMB
PRI20.0 20.0
168.5
168.5
20.0
20.0 144.8144.8
SECT RCMMEMB
PRI400.0 100000.08926.5 7866.8
20.0
20.0 105.03000.
GRUP
GRUP CMR MEMBSMR
29.0 11.6 100.0 1
1.0 1.0
1.0
.001
GRUP C01 CODMEMB
29.0 11.6 100.0 1
.9 .9
1.0 N620.0
GRUP C02 CODMEMB
29.0 11.6 100.0 1
.9 .9
1.0 N620.0
GRUP C03 CODMEMB
29.0 11.6 100.0 1
.9 .9
1.0 N620.0
GRUP C04 CODMEMB
29.0 11.6 100.0 1
.9 .9
1.0 N620.0
GRUP COD CODMEMB
29.0 11.6 100.0 1
.9 .9
1.0 N620.0
GRUP DBR
18.0 .75
29.0 11.6 52.0 1
1.0 1.0
.5
N.001
GRUP HB1
9.625 1.25
29.0 11.6 65.0 1
.8 .8
.5
N546.23
GRUP HB2
9.625 1.5
29.0 11.6 65.0 1
.8 .8
.5
N546.23
GRUP HBB MEMBHBB
29.0 11.6 52.0 1
1.0 1.0
.5
N.001
GRUP IDB
6.625 .432
29.0 11.6 34.0 1
1.0 1.0
.5
N546.43
GRUP JK1 JK1MEMB
29.0 11.6 52.0 1
1.661.66
1.0 N.001
GRUP JK2 JK2MEMB
29.0 11.6 52.0 1
5.0 5.0
1.0 N.001
GRUP KB1
9.625 1.0
29.0 11.6 65.0 1
.8 .8
.5
N546.23
GRUP KB2
9.625 1.25
29.0 11.6 65.0 1
.8 .8
.5
N546.23
GRUP L11 MEMBL11
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L13 MEMBL13
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L14 MEMBL14
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L15 MEMBL14
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L16 MEMBL14
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L17 MEMBL17
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L18 MEMBL18
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L19 MEMBL19
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP L20 MEMBL20
29.0 11.6 34.0 1
1.0 1.0
1.0
.001
GRUP LEG MEMBLEG
29.0 11.6 100.0 1
1.0 1.0
.5
N3115.0
GRUP LGM MEMBSMR
29.0 11.6 100.0 1
1.0 1.0
1.0
.001
GRUP LWL MEMBLWL
29.0 11.6 51.0 1
1.0 1.0
1.0
.001
GRUP PIN PINMEMB
29.0 11.6 52.0 1
1.0 1.0
1.0 N.001
GRUP RCM RCMMEMB
29.0 11.6 100.0 1
1.0 1.0
1.0
.001
GRUP SMR MEMBSMR
29.0 11.6 100.0 1
1.0 1.0
1.0
.001
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 52
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
GRUP SS1 MEMBSS1
GRUP SS2 MEMBSS2
GRUP T10 MEMBT10
GRUP T11 MEMBT11
GRUP T12 MEMBT12
GRUP TR1 MEMBTR1
GRUP TR2 MEMBTR2
GRUP TR3 MEMBTR3
GRUP TR4 MEMBTR4
GRUP TR5 MEMBTR5
GRUP TR6 MEMBTR6
GRUP TR7 MEMBTR7
GRUP TR8 MEMBTR8
GRUP TR9 MEMBTR9
GRUP UGM MEMBSMR
GRUP VB1
9.625 1.0
GRUP VB2
6.625 .432
GRPOV
GRPOV
CMR N
GRPOV
C01 N
GRPOV
C02 N
GRPOV
C03 N
GRPOV
C04 N
GRPOV
COD N
GRPOV
DBR N
GRPOV
HBB N
GRPOV
HB1 N
GRPOV
KB1 N
GRPOV
HB2 N
GRPOV
KB2 N
GRPOV
IDB N
GRPOV
JK1 N
GRPOV
JK2 N
GRPOV
L11 N
GRPOV
L13 N
GRPOV
L14 N
GRPOV
L15 N
GRPOV
L16 N
GRPOV
L17 N
GRPOV
L18 N
GRPOV
L19 N
GRPOV
L20 N
GRPOV
LEG N
GRPOV
LGM N
GRPOV
LWL N
GRPOV
PIN N
GRPOV
RCM N
GRPOV
SMR N
GRPOV
SS1 N
GRPOV
SS2 N
GRPOV
T10 N
GRPOV
T11 N
GRPOV
T12 N
GRPOV
TR1 N
GRPOV
TR2 N
GRPOV
TR3 N
GRPOV
TR4 N
GRPOV
TR5 N
GRPOV
TR6 N
GRPOV
TR7 N
GRPOV
TR8 N
GRPOV
TR9 N
GRPOV
UGM N
GRPOV
VB1 N
GRPOV
VB2 N
LOAD
LOADCN
1
LOAD
4101
LOAD
4103
LOAD
4105
LOAD
4301
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
-2466.8
-2466.8
-2466.8
-2466.8
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
100.0
65.0
65.0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.001
12.0
12.0
12.0
12.0
12.0
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
12.0
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
12.0
12.0
12.0
12.0
12.0
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
12.0
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.8
.8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.8
.8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.5
.5
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
N546.23
N546.23
.001.001.001.001
5.095.0914.314.3
5.095.0914.314.3
5.095.0914.314.3
5.095.0914.314.3
3.5 3.5 13.113.1
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
18.018.046.446.4
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
.001.001.001.001
GLOB
GLOB
GLOB
GLOB
JOIN
JOIN
JOIN
JOIN
ELEVATED
ELEVATED
ELEVATED
ELEVATED
Page 53
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
LOAD
LOAD
LOAD
LOAD
LOAD
LOADCN
WAVE
WAVE
LCOMB
LCOMB
LCOMB
LCOMB
LCOMB
LCOMB
LCOMB
LCOMB
END
4303
4305
4201
4203
4205
5
-2466.8
-2466.8
-2466.8
-2466.8
-2466.8
STOK47.3
24
25
26
27
28
29
30
1
1
1
1
1
1
1
245.0 13.3
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2
3
4
5
6
7
8
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
1.150
1.150
1.150
1.150
1.150
1.150
1.150
GLOB
GLOB
GLOB
GLOB
GLOB
90.0
9
10
11
12
13
14
15
1.527
1.415
1.537
1.508
1.531
1.526
1.411
D-60.0
16
17
18
19
20
21
22
2.580
2.987
1.891
1.674
1.890
2.255
3.407
23
23
23
23
23
23
23
5.0
JOIN
JOIN
JOIN
JOIN
JOIN
ELEVATED
ELEVATED
ELEVATED
ELEVATED
ELEVATED
72MM10 1 0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
Page 54
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
APPENDIX D: LET 116C Jack-Up Partial Sacs Fem Listing
LDOPT
INOPFL+Z64.2
490.0
94.5
252.5
GLOBEN
OPTIONS
EN
SDUC
1 1
0
PTPTPTPT
PTPT
LCSEL ST
26
UCPART
0.00.6
.6
1.0 1.0
AMOD
AMOD
24 1.333 25 1.333 26 1.333 27 1.333 28 1.333 29 1.333 30 1.333
SECT
SECT CD1MEMB
PRI165.969268.0 14254.086522.26 22.8
28.0 56.0 56.0
SECT CD2MEMB
PRI165.969268.0 14254.086522.26 22.8
28.0 56.0 56.0
SECT CD3MEMB
PRI165.969268.0 14254.086522.26 22.8
28.0 56.0 56.0
SECT CD4MEMB
PRI165.969268.0 14254.086522.26 22.8
28.0 56.0 56.0
SECT GAPMEMB
PRI.45
1.000+091.000+091.000+09 200.0
200.0 200.0200.0
SECT H01MEMB
PRI309.6 9.610+084403000.1.000+09 100.0
100.0 150.0150.0
SECT H02MEMB
PRI302.4 9.610+084356000.1.000+09 100.0
100.0 150.0150.0
SECT H03MEMB
PRI401.769.610+087.104+071.000+09 100.0
100.0 200.0200.0
SECT H04MEMB
PRI891.369.610+081.649+071.000+09 100.0
100.0 495.0495.0
SECT H05MEMB
PRI878.4 9.610+081.495+071.000+09 100.0
100.0 440.0440.0
SECT H06MEMB
PRI1742.49.610+082.977+071.000+09 100.0
100.0 870.0870.0
SECT H08MEMB
PRI760.329.610+081.396+071.000+09 100.0
100.0 380.0380.0
SECT H09MEMB
PRI302.4 9.610+083988000.1.000+09 100.0
100.0 150.0150.0
SECT H11MEMB
PRI717.129.610+081.348+071.000+09 100.0
100.0 360.0360.0
SECT H12MEMB
PRI612.0 9.610+081.009+071.000+09 100.0
100.0 305.0305.0
SECT H13MEMB
PRI260.649.610+083419000.1.000+09 100.0
100.0 130.0130.0
SECT H14MEMB
PRI215.469.610+081244000.1.000+09 100.0
100.0 110.0110.0
SECT H15MEMB
PRI15500.1.000+091.000+091.000+09 100.0
100.0 1000.1000.
SECT HB1MEMB
TUB
12.75 .75
SECT HB2MEMB
TUB
12.75 .75
SECT HB3MEMB
TUB
12.75 .5
SECT JPBMEMB
PRI244.0 333000.033000.0 300000.0 51.0
124.0 286.5144.0
SECT JTBMEMB
PRI54.0 2140.74 2279.0 937.0
18.0
11.0 22.0 36.0
SECT KB1SECT
TUB
12.75 .75
SECT KB2SECT
TUB
12.75 .75
SECT KB3SECT
TUB
12.75 .5
SECT MEMBLEG
PRI900.027953807.1.596+091.596+09 336.0
336.0 140.9140.9
SECT MEMBLWL
PRI1.0+051.000+091.000+091.000+09 288.0
120.0 1000.180.0
SECT MEMBSMR
PRI1500.01.000+091.000+091.000+09 100.0
100.0 3000.3000.
GRUP
GRUP CD1 CD1MEMB
29.0 11.6 75.0 1
.8 .8
.5
N490.0
GRUP CD2 CD2MEMB
29.0 11.6 75.0 1
.8 .8
.5
N490.0
GRUP CD3 CD1MEMB
29.0 11.6 75.0 1
.8 .8
.5
N490.0
GRUP CD4 CD2MEMB
29.0 11.6 75.0 1
.8 .8
.5
N490.0
GRUP CMR MEMBSMR
29.0 11.6 36.0 1
1.0 1.0
.5
N.001
GRUP GAP GAPMEMB
29.0 11.6 85.0 1
1.0 1.0
.5
N.001
GRUP H01 H01MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H02 H02MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H03 H03MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H04 H04MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H05 H05MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H06 H06MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H08 H08MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H09 H09MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H11 H11MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H12 H12MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H13 H13MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H14 H14MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP H15 H15MEMB
29.0 11.6 36.0 1
1.0 1.0
1.0
.001
GRUP HB1 HB1MEMB
29.0 11.6 90.0 1
.65 .65
.5
N490.0
GRUP HB2 HB2MEMB
29.0 11.6 90.0 1
.65 .65
.5
N490.0
GRUP HB3 HB3MEMB
29.0 11.6 90.0 1
.65 .65
.5
N490.0
GRUP IDB
8.625 .375
29.0 11.6 90.0 1
.8 .8
.5
N490.0
GRUP JBB
18.0 .75
29.0 11.6 52.0 1
1.0 1.0
.5
N.001
GRUP JPB JPBMEMB
29.0 11.6 52.0 1
1.0 1.0
1.0 N.001
GRUP JTB JTBMEMB
29.0 11.6 52.0 1
1.0 1.0
.5
N.001
GRUP KB1 KB1SECT
29.0 11.6 90.0 1
.65 .65
.5
N490.0
GRUP KB2 KB2SECT
29.0 11.6 90.0 1
.65 .65
.5
N490.0
GRUP KB3 KB3SECT
29.0 11.6 90.0 1
.65 .65
.5
N490.0
GRUP LEG MEMBLEG
29.0 11.6 88.0 1
1.0 1.0
.5
N2422.1
GRUP LGM MEMBSMR
29.0 11.6 36.0 1
1.0 1.0
.5
N.001
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
Page 55
LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1
GRUP LHC MEMBSMR
29.0 11.6 36.0
GRUP LWL MEMBLWL
29.0 11.6 51.0
GRUP PIN MEMBSMR
29.0 11.6 36.0
GRUP UGM MEMBSMR
29.0 11.6 36.0
GRPOV
GRPOV
CD1 N
12.0
GRPOV
CD2 N
12.0
GRPOV
CD3 N
12.0
GRPOV
CD4 N
12.0
GRPOV
CMR N
.001
GRPOV
GAP N
.001
GRPOV
H01 N
.001
GRPOV
H02 N
.001
GRPOV
H03 N
.001
GRPOV
H04 N
.001
GRPOV
H05 N
.001
GRPOV
H06 N
.001
GRPOV
H08 N
.001
GRPOV
H09 N
.001
GRPOV
H11 N
.001
GRPOV
H12 N
.001
GRPOV
H13 N
.001
GRPOV
H14 N
.001
GRPOV
H15 N
.001
GRPOV
HB1 N
.001
GRPOV
HB2 N
.001
GRPOV
HB3 N
.001
GRPOV
IDB N
.001
GRPOV
JBB N
.001
GRPOV
JPB N
.001
GRPOV
JTB N
.001
GRPOV
KB1 N
.001
GRPOV
KB2 N
.001
GRPOV
KB3 N
.001
GRPOV
LEG N
12.0
GRPOV
LGM N
.001
GRPOV
LHC N
.001
GRPOV
LWL N
.001
GRPOV
PIN N
.001
GRPOV
UGM N
.001
LOAD
LOADCN
1
LOAD
4101
-1175.0
LOAD
4102
-1175.0
LOAD
4103
-1175.0
LOAD
4104
-1175.0
LOAD
4201
-1175.0
LOAD
4202
-1175.0
LOAD
4203
-1175.0
LOAD
4204
-1175.0
LOAD
4301
-1175.0
LOAD
4302
-1175.0
LOAD
4303
-1175.0
LOAD
4304
-1175.0
LOADCN
4
CURR
CURR
0.000
0.00060.0
CURR
49.0
.96
60.0
CURR
126.3
1.04
60.0
CURR
252.5
1.12
60.0
WAVE
WAVE
STOK31.8 252.5 10.0
60.0
LCOMB
LCOMB
24
1 1.000
2 1.150
9 0.550 16
LCOMB
25
1 1.000
3 1.150 10 0.568 17
LCOMB
26
1 1.000
4 1.150 11 0.531 18
LCOMB
27
1 1.000
5 1.150 12 0.524 19
LCOMB
28
1 1.000
6 1.150 13 0.564 20
LCOMB
29
1 1.000
7 1.150 14 0.546 21
LCOMB
30
1 1.000
8 1.150 15 0.534 22
END
709-J-IO-RPT-001 © 2010
Bennett & Associates, L.L.C.
1
1
1
1
1.0
1.0
1.0
1.0
12.0
12.0
12.0
12.0
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
12.0
.001
.001
.001
.001
.001
1.0
1.0
1.0
1.0
.5
1.0
.5
1.0
N.001
.001
N.001
.001
8.438.4325.025.0
8.438.4325.025.0
7.177.1724.124.1
7.177.1724.124.1
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
33.733.7100.100.
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
.001.001.01 .01
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
GLOB
D-60.0
0.903
0.751
0.869
0.736
0.953
0.738
0.821
23
23
23
23
23
23
23
5.0
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
HULLWT
72MM10 1 0
1.000
1.000
1.000
1.000
1.000
1.000
1.000
Page 56