LeT 116C Jack-Up KFELS B-Class Jack-Up PHASE 2 BENCHMARKING OF ISO 19905-1 Report No: 709-J-IO-RPT-001 10/14/2011 11/22/2010 Date 1 0 Rev. PREPARED FOR: ISO Benchmark Panel c/o Mr. John Stiff © 2010 Bennett & Associates, L.L.C. Add requested clarification statement Issued for Client Use Description JV DH Prepared by PREPARED BY: Bennett & Associates 5177 Richmond Ave, Suite 1188 Houston, TX 77056 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 TABLE OF CONTENTS 1. EXECUTIVE SUMMARY ..............................................................................................1 2. INTRODUCTION AND METHODOLGY .....................................................................2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 BASIC SOIL FOUNDATION CONDITIONS ............................................................... 2 DESCRIPTION OF THE KFELS B-CLASS JACK-UP ................................................ 2 DESCRIPTION OF THE LET 116C JACK-UP ............................................................. 3 ENVIRONMENTAL CRITERIA ................................................................................... 5 LEG STRUCTURE AND MATERIAL SPECIFICATION ........................................... 7 STRUCTURAL MODELLING .................................................................................... 11 CALCULATION OF LOADS....................................................................................... 14 DYNAMICS .................................................................................................................. 14 HULL SWAY EFFECTS .............................................................................................. 14 3. INTERMEDIATE ANALYSIS RESULTS AND COMMENTS ..................................16 3.1 3.2 3.3 HYDRODYNAMIC COEFFICIENTS ......................................................................... 16 WIND AREAS .............................................................................................................. 17 LEG PENETRATION AND FOUNDATION CAPACITY ......................................... 19 4. ALIGNMENT-POINTS RESULTS AND COMMENTS..............................................23 4.1 4.2 4.3 4.4 4.5 LEG DRAG COEFFICIENT......................................................................................... 23 HULL WIND AREAS................................................................................................... 24 FOUNDATION ANALYSIS ........................................................................................ 25 DAF CALCULATIONS................................................................................................ 26 FOOTING REACTIONS .............................................................................................. 28 5. ANALYSIS RESULTS FOR KFELS B-CLASS JACK-UP .........................................30 5.1 5.2 SAND CASE FOR KFELS B-CLASS JACK-UP ........................................................ 30 CLAY CASE FOR KFELS B-CLASS JACK-UP ........................................................ 33 6. ANALYSIS RESULTS FOR LET 116C JACK-UP ......................................................37 6.1 6.2 SAND CASE FOR LET 116C JACK-UP ..................................................................... 37 CLAY CASE FOR LET 116C JACK-UP ..................................................................... 40 7. CONCLUSIONS.............................................................................................................44 8. REFERENCES ...............................................................................................................45 APPENDIX A: KFELS B-CLASS Jack-up Hydrodynamic Coefficient Calculations............46 APPENDIX B: LET 116C Jack-Up Hydrodynamic Coefficient Calculations........................49 APPENDIX C: KFELS B-CLASS Jack-Up Partial Sacs Fem Listing...................................52 APPENDIX D: LET 116C Jack-Up Partial Sacs Fem Listing ...............................................55 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page ii LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 LIST OF TABLES Table 1.1 – Overall Scope of Work.......................................................................................... 1 Table 2.1 – Clay Soil Properties............................................................................................... 2 Table 2.2 – Sand Soil Properties .............................................................................................. 2 Table 2.3 – KFELS B-Class Jack-up Principal Dimensions.................................................... 3 Table 2.4 – KFELS B-Class Jack-up Hull and Leg Weights ................................................... 3 Table 2.5 – LeT 116C Jack-up Principal Dimensions ............................................................. 4 Table 2.6 – LeT 116C Jack-up Hull and Leg Weights............................................................. 4 Table 2.7 – KFELS B-Class Jack-up Environmental Conditions ............................................ 5 Table 2.8 – LeT 116C Class Jack-up Environmental Conditions (Sand Case)....................... 5 Table 2.9 – LeT 116C Class Jack-up Environmental Conditions (Clay Case) ....................... 6 Table 2.10 – KFELS B-Class Jack-up Leg Member Minimum Yield Properties.................... 7 Table 2.11 – LeT 116C Class Jack-up Leg Member Minimum Yield Properties .................. 9 Table 3.1 – KFELS B-Class Jack-up Hydrodynamic Coefficients........................................ 16 Table 3.2 – LeT 116C Class Jack-up Hydrodynamic Coefficients....................................... 17 Table 3.3 – KFELS B-Class Jack-up Hull Wind Area........................................................... 17 Table 3.4 – LeT 116C Jack-up Hull Wind Area .................................................................... 18 Table 3.5 – LeT 116C Jack-up Hull Wind Area (GM’s Wind Area)..................................... 18 Table 3.6 – KFELS B-Class Jack-up Sand Case.................................................................... 19 Table 3.7 – KFELS B-Class Jack-up Clay Case .................................................................... 20 Table 3.8 – LeT 116C Jack-up Sand Case ............................................................................. 21 Table 3.9 – LeT 116C Jack-up Clay Case.............................................................................. 22 Table 4.1 – Leg Drag Coefficient (KFELS B-Class Jack-up)................................................ 23 Table 4.2 – Leg Drag Coefficient (LeT 116C Jack-up) ......................................................... 23 Table 4.3 – Hull Wind Areas (KFELS B-Class Jack-up) ...................................................... 24 Table 4.4 – Hull Wind Areas (LeT 116C Jack-up) ................................................................ 24 Table 4.5 – Penetration and Spudcan Fixities-Sand Case (KFELS B-Class Jack-up)........... 25 Table 4.6 – Penetration and Spudcan Fixities-Clay Case (KFELS B-Class Jack-up) ........... 25 Table 4.7 – Penetration and Spudcan Fixities-Sand Case (LeT 116C Jack-up) .................... 25 Table 4.8 – Penetration and Spudcan Fixities-Clay Case (LeT 116C Jack-up)..................... 26 Table 4.9 – DAF Calculations-Sand Case (KFELS B-Class Jack-up)................................... 26 Table 4.10 – DAF Calculations-Clay Case (KFELS B-Class Jack-up) ................................. 26 Table 4.11 – DAF Calculations (LeT 116C Jack-up) ............................................................ 27 Table 4.12 – Footing Reactions-Sand Case (KFELS B-Class Jack-up) ................................ 28 Table 4.13 – Footing Reactions-Clay Case (KFELS B-Class Jack-up)................................. 28 Table 4.14 – Footing Reactions-Sand Case (LeT 116C Jack-up) .......................................... 29 Table 4.15 – Footing Reactions-Clay Case (LeT 116C Jack-up) .......................................... 29 Table 5.1 – Environmental Loads .......................................................................................... 30 Table 5.2 – Global Footing Reactions.................................................................................... 30 Table 5.3 – Overturning Stability Checks.............................................................................. 31 Table 5.4 – Preload Capacity Check ...................................................................................... 31 Table 5.5 – Leg Member Strength Check .............................................................................. 31 Table 5.6 – Jacking System Strength Check .......................................................................... 32 Table 5.7 – Bearing Capacity/Sliding Utilizations (Sand Case) ............................................ 33 Table 5.8 – Environmental Loads .......................................................................................... 33 Table 5.9 – Global Footing Reactions.................................................................................... 34 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page iii LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Table 5.10 – Overturning Stability Checks............................................................................ 34 Table 5.11 – Preload Capacity Check .................................................................................... 34 Table 5.12 – Leg Member Strength Check ............................................................................ 35 Table 5.13 – Jacking System Strength Check ........................................................................ 35 Table 5.14 – Bearing Capacity/Sliding Utilizations (Clay Case)........................................... 36 Table 6.1 – Environmental Loads .......................................................................................... 37 Table 6.2 – Global Footing Reactions.................................................................................... 37 Table 6.3 – Overturning Stability Checks.............................................................................. 38 Table 6.4 – Preload Capacity Check ...................................................................................... 38 Table 6.5 – Leg Member Strength Check .............................................................................. 38 Table 6.6 – Jacking System Strength Check .......................................................................... 39 Table 6.7 – Bearing Capacity/Sliding Utilizations (Sand Case) ............................................ 40 Table 6.8 – Environmental Loads .......................................................................................... 40 Table 6.9 – Global Footing Reactions.................................................................................... 41 Table 6.10 – Overturning Stability Checks............................................................................ 41 Table 6.11 – Preload Capacity Check .................................................................................... 41 Table 6.12 – Leg Member Strength Check ............................................................................ 42 Table 6.13 – Jacking System Strength Check ........................................................................ 42 Table 6.14 – Bearing Capacity/Sliding Utilizations (Clay Case)........................................... 43 LIST OF FIGURES Figure 2.1 – KFELS B-Class Jack-up Leg Chord Section....................................................... 8 Figure 2.2 – LeT 116C Jack-up Leg Chord Section .............................................................. 10 Figure 2.3 – KFELS B-Class Jack-up SACS Finite Element Model..................................... 12 Figure 2.4 – LeT 116C Jack-up SACS Finite Element Model .............................................. 13 Figure 5.1 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 32 Figure 5.2 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 36 Figure 6.1 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 39 Figure 6.2 – Spudcan Foundation Bearing Capacity/Sliding Check ..................................... 42 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page iv LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 1. EXECUTIVE SUMMARY ISO 19905-1 “Petroleum and natural gas industries – Site-specific assessment of mobile offshore units – Part 1: Jack-Ups” has been developed from SNAME bulletin 5-5A (SNAME), but has undergone significant modification in structure, and some content change, during its development. Before 19905-1 will be released as a Draft International Standard (DIS), it will be necessary to ensure that the document is both complete and produces results that would be expected. As a first step to achieving this, a three-phase scope of work has been developed to give an overall understanding of the benchmarking process. The purpose of the Phase 2 study is to undertake a complete quantitative check of ISO methodology to verify that the results are in reasonable compliance with SNAME T&R 5-5A Rev. 3, and to assess possible areas that may have room for misinterpretation Four separate consultants are to study four different jack-ups, as shown in Table 1-1. Company Rig 1 Standard Rig 2 Standard Global Maritime GL Noble Denton Bennett & Associates 116C ISO & SNAME RGV ISO Keppel B-Class ISO & SNAME RGV ISO & SNAME Keppel B-Class ISO 116C ISO GustoMSC CJ 62 ISO & SNAME -- -- Table 1.1 – Overall Scope of Work The assessment has used adjusted leg-to-hull connection stiffness and other generic parameters of KeppelFELS B-Class jackup units. The results presented herein are for the purposes of benchmarking alone and are not representative of KeppelFELS B-Class jackup units. The work performed by Bennett & Associates (BASS) was as the secondary reviewer of the proposed guidelines, with Global Maritime (GM) and GL Noble Denton having final say on the various alignment points for the work on the 116C and the B-Class jack ups, respectively. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 1 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 2. INTRODUCTION AND METHODOLGY 2.1 BASIC SOIL FOUNDATION CONDITIONS The sand and clay soil foundation cases provided by the Benchmarking Panel were investigated for the jack-ups. The soil properties are tabulated in Table 2.1 and Table 2.2. Clay Soil Properties Used for Foundation Analysis Penetration (m) 0.00 19.00 29.00 36.50 45.00 Penetration (ft) 0.0 62.3 95.1 119.8 147.6 Unit Weight (kN/m3) 4.00 5.80 5.80 5.80 8.00 Unit Weight (lb/ft3) 25 37 37 37 51 Cu (kN/m2) 2.4 27.3 40.5 50.3 67.0 Cu (k/ft2) 0.05 0.57 0.85 1.05 1.40 Cu (psi) 0.35 3.96 5.87 7.30 9.72 Shear Modulus, G (MPa) 23.1 31.6 37.9 62.8 G (k/ft2) 0 482 660 792 1312 Table 2.1 – Clay Soil Properties Sand Soil Properties Used for Foundation Analysis γ’ 11 φ 34o δ 29o Relative density in sands 60% Water Content 22% Poisons Ratio 0.2 d50 0.095 d90 0.15 Shear modulus G 23765 * SQRT[Vswl / (101.3 * A)] kN/m3 mm mm kPa Table 2.2 – Sand Soil Properties 2.2 DESCRIPTION OF THE KFELS B-CLASS JACK-UP The KFELS B-Class jack-up has three triangular, tubular reversed ‘K’ trussed legs with split tube, double-sided rack chords. The legs of the unit are guided through the hull by rigid guide structures located at the base of the hull and at the top of the elevating system. The unit has twelve (12) pinion gears per leg for elevating the hull. A Self-Positioning Fixation System (SPFS) is used to support the unit when elevated. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 2 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The principal dimensions of the KFELS B-Class jack-up are as given in the table below. Length Overall 68.6 m Breadth Overall 63.4 m Depth of Hull (side) 7.8 m Leg Length 157.6 m Longitudinal Leg Spacing 39.3 m Transverse Leg Spacing 43.3 m Spudcan Diameter 13.9 m Spudcan Height 5.8 m Table 2.3 – KFELS B-Class Jack-up Principal Dimensions. The weights used in the analysis were as follows: Total Elevated Hull Weight 10,070 t LCG1 (ft) 0.0 TCG2 (ft) 0.0 Total Leg Weight3 1. 2. 3. 3,348 t Longitudinal center of gravity (LCG) measured positive aft of center of legs. Transverse center of gravity (TCG) measured from rig centerline, positive starboard. 157.6 m total leg length. Table 2.4 – KFELS B-Class Jack-up Hull and Leg Weights 2.3 DESCRIPTION OF THE LET 116C JACK-UP The Atwood Vicksburg jack-up drilling unit has three four-chord, tubular ‘K’ trussed legs with ‘tear-drop’ single-sided rack chords. The legs of the unit are guided through the hull by rigid guide structures located at the base of the hull and at the top of the jack house. The unit has sixteen (16) pinion gears per leg for elevating the hull. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 3 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The principal dimensions of the LeT 116C unit are as given in the table below. Length Overall 74.1 m Breadth Overall 62.8 m Depth of Hull (side) 7.9 m Leg Length for Sand Case 104.5 m Leg Length for Clay Case 145.4 m Longitudinal Leg Spacing 39.3 m Transverse Leg Spacing 43.3 m Spudcan Diameter 14.0 m Spudcan Height 7.3 m Table 2.5 – LeT 116C Jack-up Principal Dimensions The weights used in the analysis were as follows: Total Elevated Hull Weight 6,396 t LCG1 (ft) 0.0 TCG2 (ft) 0.0 Total Leg Weight3 1. 2. 3. 3,284 t Longitudinal center of gravity (LCG) measured positive aft of center of legs. Transverse center of gravity (TCG) measured from rig centerline, positive starboard. 145.4 m total leg length. Table 2.6 – LeT 116C Jack-up Hull and Leg Weights 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 4 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 2.4 ENVIRONMENTAL CRITERIA Environmental extremes for sand and clay cases are as follows: Case Sand Clay Water Depth (m) 106.7 70 Hmax (m) 13.1 16.8 Tass (s) 11.7 13.3 Hs (m) 7 9 Tp (s) 13 14.7 Current (m/s) 0 0 Storm surge and tide (m) 4.6 4.6 Wind Speed (m/s) 51.4 51.4 Airgap (m) 15.2 15.2 Table 2.7 – KFELS B-Class Jack-up Environmental Conditions Case Sand Water Depth (m) 64.0 Hmax (m) 16.7 Tass (s) 12.1 Hs (m) 9.0 Tp (s) 13.1 Surface Current (m/s) 1.50 Mid-depth Current (m/s) 1.50 75% Below Surface Current (m/s) 1.40 1 m above seabed Current (m/s) 0.9 Storm surge and tide (m) 21.0 Wind Speed (m/s) 35.0 Airgap (m) 20.1 Table 2.8 – LeT 116C Class Jack-up Environmental Conditions (Sand Case) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 5 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Case Clay Water Depth (m) 76.2 Hmax (m) 11.3 Tass (s) 10.0 Hs (m) 6.4 Tp (s) 11.1 Surface Current (m/s) 0.75 Mid-depth Current (m/s) 0.69 Bottom Current (m/s) 0.64 Storm surge and tide (m) 2.5 Wind Speed (m/s) 31.4 Airgap (m) 18.9 Table 2.9 – LeT 116C Class Jack-up Environmental Conditions (Clay Case) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 6 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 2.5 LEG STRUCTURE AND MATERIAL SPECIFICATION The design minimum yield stress values of the legs for KFELS B-Class Jack-up are as follows: Item Chord (tube and rack) Diagonal and Horizontal Brace Member Diagonal and Horizontal Brace Member Internal Span Breaker Dimensions Yield Stress (ksi) See Figure 2.1 100 85/8” O.D. 1.5” w.t. pipe up to 162.1 ft above can tip. 85/8” O.D. 1.25” w.t. pipe above 162.1 ft. 85/8” O.D. 1.25” w.t. pipe up to 162.1 ft above can tip. 85/8” O.D. 1.0” w.t. pipe above 162.1 ft. 63/8” O.D. 0.432” w.t. pipe 65 65 35 Table 2.10 – KFELS B-Class Jack-up Leg Member Minimum Yield Properties 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 7 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Area = 187.89 in2 I major = 5,50.89 in4 I minor = 3,03.41 in4 Figure 2.1 – KFELS B-Class Jack-up Leg Chord Section 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 8 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The design minimum yield stress values of the legs for LeT 116C Class Jack-up are as follows: Item Dimensions 70 Chord Back Plate Chord Side Plate Yield Stress (ksi) See Figure 2.2 70 70 Chord Rack 12.75” O.D. x 1.00” w.t. Pipe up to 142 ft above can tip Horizontal Braces 12.75” O.D. x 0.50” w.t. Pipe from 142 ft to 175.55 ft 12.75” O.D. x 0.75” w.t. Pipe from 175.55 ft to 343.3 ft 85 12.75” O.D. x 0.50” w.t. Pipe from 343.3 ft to 410.9 ft 12.75” O.D. x 1.00” w.t. Pipe up to 142 ft above can tip Diagonal Braces 12.75” O.D. x 0.50” w.t. Pipe from 142 ft to 175.55 ft 12.75” O.D. x 0.75” w.t. Pipe from 175.55 ft to 343.3 ft 85 12.75” O.D. x 0.50” w.t. Pipe from 343.3 ft to 410.9 ft Internal Span Breaker 9” O.D. x 0.375” w.t. Pipe 85 Table 2.11 – LeT 116C Class Jack-up Leg Member Minimum Yield Properties 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 9 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Figure 2.2 – LeT 116C Jack-up Leg Chord Section 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 10 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 2.6 STRUCTURAL MODELLING The global and detailed response of the unit under static and environmental loads was evaluated by performing a detailed Finite Element analysis of the structure and foundation. The capacity of the unit was assessed based on Ultimate Limit State methodology as described in the ISO 19905-1, (i.e., factored loads and factored ultimate capacities). The effects of hull side-sway (P-delta) and dynamic amplification were included in the analysis. A detailed structural model of the leg and of the surrounding supporting structure was made using SACS finite element software. The assumptions made in the Finite Element (FE) structural modeling are described below. The leg chords were modeled by beam elements with appropriate shear and bending properties. The axial stiffness contribution of the rack teeth was ignored in the strength assessment; however, 10% of the rack tooth area was assumed in the global response calculation. Braces were also modeled as tubular beam elements. The jack frame was modeled by beam elements with appropriate section properties. The leg guides were modeled by spring elements with freedoms in the appropriate directions giving reaction forces corresponding to guides reacting against the rack teeth. For LeT 116C Jack-up the pinions were modelled in a similar fashion giving the appropriate restraint and stiffness. For KFELS B-Class Jack-up the Self-Positioning Fixation Systems (SPFS) were modeled in a similar fashion giving the appropriate restraint and stiffness. Figure 2.3 shows the KFELS B-Class Jack-up SACS Finite Element model. Figure 2.4 shows the LeT 116C Jack-up SACS Finite Element model. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 11 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Figure 2.3 – KFELS B-Class Jack-up SACS Finite Element Model 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 12 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Figure 2.4 – LeT 116C Jack-up SACS Finite Element Model 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 13 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 2.7 CALCULATION OF LOADS Wave and current loadings at each storm heading were automatically computed using the SEASTATE Program of the SACS finite element analysis software. Forces were computed using Morison’s equation and wave particle kinematics based on Stokes Fifth Order Wave Theory. Wind forces were computed using the formulae and coefficients given in the ISO 19905-1. The wave and current forces were factored by the kinematics and blockage factors. Benchmark Panel instructed that the wave kinematics/spreading reduction factor (Hdet to Hmax) of 0.86 was to be used for all the cases. To account for blockage effects of the leg, a current blockage factor has been derived in accordance with the ISO 19905-1. An average blockage factor (i.e., reduction in current velocity) of 0.91 was used for KFELS B-Class Jack-up and 0.77 for LeT 116C Jack-up. 2.8 DYNAMICS The inertial loadset is derived from random wave time domain dynamic analysis; two DAF's are calculated, one for the base shear (BS) and one for the overturning moment (OTM). The applied inertial loadset included the inertial base shear and the inertial overturning moment. This is accomplished by a combination of lateral force acting on the hull VCG level and correcting moment applied as a couple to the hull. 80% of initial foundation fixity was included in the random wave time domain dynamic analysis. 2.9 HULL SWAY EFFECTS The combination of vertical (gravity) loads and the side sway of the hull result in a secondary bending moment (P-delta moment), which is also included in the SACS analysis. The Pdelta moment increases both the vertical footing reaction (due to increased overturning moment) and the moment at the lower guide due to the offset of the footing induced by hull sway. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 14 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 P-delta effects are included as follows: P-delta Moment = Hull Weight Lateral Hull Displacement The P-delta force is applied at the hull VCG level, giving the correct overturning moment and lower guide bending moment. This force is calculated as follows: P-delta Force = P delta Moment Distance from footing to hull VCG Point loads were added to the hull structure to give the correct hull weight and center of gravity. The analysis was run twice, first to calculate the hull sway, and then repeated including the additional overturning moments due to hull sway. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 15 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 3. INTERMEDIATE ANALYSIS RESULTS AND COMMENTS 3.1 HYDRODYNAMIC COEFFICIENTS For all the storm cases, the hydrodynamic coefficients were calculated for the legs in accordance with the methodology described in the ISO 19905-1. The legs were assumed to have a marine growth level of 12.5 mm (thickness). Rough and smooth tubular members were assumed to have drag coefficients of 1.0 and 0.65 respectively. Rough members and marine growth extends below MSL+2 m and smooth clean members are assumed above. The resulting drag coefficients are presented in Table 3.1 and 3.2. Note that the heading directions are defined as counter clockwise. A 0 degree heading is taken as from stern to bow. Flow Direction (0 is flow on Apex) Rough CdD (m) (below MSL+2 m) Smooth CdD (m) (above MSL+2 m) 00 4.562 3.201 4.655 3.305 4.562 3.201 4.655 3.305 4.562 3.201 4.655 3.305 4.562 3.201 3.988 3.637 0 0 30 0 60 0 90 0 120 0 150 0 180 2 2 CmD (m ) all flow directions Table 3.1 – KFELS B-Class Jack-up Hydrodynamic Coefficients 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 16 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Flow Direction (0 is flow on Apex) Rough CdD (m) (below MSL+2 m) Smooth CdD (m) (above MSL+2 m) 00 10.829 9.188 300 9.961 8.486 600 9.961 8.486 900 10.829 9.188 1200 9.961 8.486 1500 9.961 8.486 1800 9.914 9.188 CmD2 (m2) all flow directions 9.282 8.968 0 Table 3.2 – LeT 116C Class Jack-up Hydrodynamic Coefficients 3.2 WIND AREAS The hull wind areas with center of effort, given in Table 3.3 and Table 3.4 below, were calculated as specified in the ISO 19905-1. Note that all areas include the shape coefficients. The center of effort values are reported relative to the keel. The heading directions are defined as counter clockwise. A 0 degree heading is taken as from stern to bow. Heading (degree) Area (m2) C of E (m) 0 30 60 90 120 150 180 2,186 2,048 1,842 1,946 2,077 1,921 1,781 21.03 21.64 22.1 20.57 19.81 21.49 23.47 Table 3.3 – KFELS B-Class Jack-up Hull Wind Area 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 17 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Heading (degree) Area (m2) C of E (m) 0 30 60 90 120 150 180 1,401 1,341 1,331 1,455 1,528 1,438 1,359 15.03 15.46 15.38 14.37 13.83 14.35 15.02 Table 3.4 – LeT 116C Jack-up Hull Wind Area Bennett & Associates (BASS) and Global Maritime (GM) agreed to use GM’s hull wind area, which was based on wind test, for this analysis. Global Maritime’s hull wind areas are given in Table 3.5. All areas include the shape coefficients. The centers of effort (C of E) are reported relative to the keel. A 0o heading is taken as bow-on, a 90o heading as port-on, etc. Example of Area ID description: For example, area A1 is the hull wind area and area A2 is the wind area for the drill package. Heading (deg) 0 30 60 90 120 150 180 Area ID Area Cs (ft2) C of E (ft) A1 11,248 36.9 A2 1,723 148.2 B1 9,688 35.9 B2 3,867 105.1 C1 9,494 33.4 C2 3,642 103.3 D1 D2 E1 E2 F1 F2 G1 G2 9,139 3,146 8,956 3,580 9,386 4,024 9,214 3,250 30.2 100.1 34.6 104.8 37.7 103.1 34.5 101.7 Table 3.5 – LeT 116C Jack-up Hull Wind Area (GM’s Wind Area) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 18 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 3.3 LEG PENETRATION AND FOUNDATION CAPACITY The penetrations and foundation capacities, given in Table 3.6 to Table 3.9 below, were calculated as specified in the ISO 19905-1. Rig Physical attributes Penetration V-H Envelope Calculation Preload footing reaction, VL Spudcan area, A Spudcan volume, V Tip to max. area length Tip penetration depth Laterally projected area, As Interface friction angle, Utilisation origin 0,5QV/R,VH G Poisson ratio, v Kd1 Kd2 Kd3 K1 K2 K3 Vertical capacity, Qv Horizontal capacity, QH Moment capacity, QM Spudcan fixities Foundation capacity 7,143 152.4 353.3 2.23 1.95 6.3 25 3.106 51,080 0.2 1.00 1.00 1.00 140,473 133,190 2,724,577 7,143 857 5,779 t m2 m3 m m m deg. t kPa t/m t/m t-m/rad t t t-m Table 3.6 – KFELS B-Class Jack-up Sand Case 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 19 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Rig Physical attributes Preload footing reaction, VL Spudcan area, A Spudcan volume, V Tip to max. area length Backfill Hcav Penetration Tip penetration depth Laterally projected area, As Su at max area, Suo Su at spudcan tip (Su,l) Utilisation origin 0,5QV/R,VH Qvnet a b V-H Envelope Calculation Depth used to determine G G OCR Poisson ratio, v Kd1 Kd2 Kd3 K1 K2 K3 Vertical capacity, Qv Horizontal capacity, QH Moment capacity, QM Spudcan fixities Foundation capacity 7,143 152.4 353.3 2.23 1,532 4.3 34.1 43.7 44.2 47.1 3,772 6,062 0.91 0.289 33.6 35.7 1.0 0.5 2.00 2.06 2.41 405,952 279,138 15,837,345 8,675 2,195 12,863 t m2 m3 m t m m m2 kPa kPa t t m MPa t/m t/m t-m/rad t t t-m Table 3.7 – KFELS B-Class Jack-up Clay Case 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 20 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Rig Physical attributes Penetration V-H Envelope Calculation Spudcan fixities Foundation capacity Preload footing reaction, VL Spudcan area, A Spudcan volume, V Tip to max. area length Tip penetration depth Laterally projected area, As Interface friction angle, Utilisation origin 0,5QV/R,VH G Poisson ratio, v Kd1 Kd2 Kd3 K1 K2 K3 Vertical capacity, Qv Horizontal capacity, QH Moment capacity, QM 5,245 143.6 382.8 3.2 2.7 8.5 25 2,281 47356 0.2 1.00 1.00 1.00 117,382 111,296 1,849,533 5,245 629 3,825 t m2 m3 m m m deg. t kPa t/m t/m t-m/rad t t t-m Table 3.8 – LeT 116C Jack-up Sand Case 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 21 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Rig Physical attributes Penetration Preload footing reaction, VL Spudcan area, A Spudcan volume, V Tip to max. area length Backfill Hcav Tip penetration depth V-H Envelope Calculation Spudcan fixities Foundation capacity Laterally projected area, As Su at max area, Suo Su at spudcan tip (Su,l) Utilisation origin 0,5QV/R,VH Qvnet a b Depth used to determine G G OCR Poisson ratio, v Kd1 Kd2 Kd3 K1 K2 K3 Vertical capacity, Qv Horizontal capacity, QH Moment capacity, QM 5,209 143.6 382.8 3.2 885 3.4 28.8 50.4 36 40 2,650 4,728 0.76 0.29 27.6 30.4 1.0 0.5 1.97 2.05 2.40 330,481 228,950 12,278,036 6,094 1,774 9,216 t m2 m3 m t m m m2 kPa kPa t t m MPa t/m t/m t-m/rad t t t-m Table 3.9 – LeT 116C Jack-up Clay Case 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 22 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 4. ALIGNMENT-POINTS RESULTS AND COMMENTS 4.1 LEG DRAG COEFFICIENT Company Bennett and Associates(BASS) Item CD*D (m) CM.D2 (m2) Rough Smooth 4.61 3.26 3.99 3.64 Noble Denton (ND) CM.D2 CD*D (m) (m2) 5.189 3.657 4.313 4.056 % Difference CD*D 1.13 1.12 CM.D2 1.08 1.12 Table 4.1 – Leg Drag Coefficient (KFELS B-Class Jack-up) Company Item Rough Smooth Bennett and Associates(BASS) CD*D (m) 10.27 CM.D2 (m2) 9.28 8.74 8.97 Global Maritime(GM) CM.D2 CD*D (m) (m2) 11.00 11.40 8.93 10.70 % Difference CD*D CM.D2 1.07 1.23 1.02 1.19 Table 4.2 – Leg Drag Coefficient (LeT 116C Jack-up) For LeT 116C Jack-up, in BASS calculation, the marine growth was ignored on gussets and chord. In GM calculation, the marine growth was included on gussets and chord. GM agreed to use the BASS calculated leg drag coefficient. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 23 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 4.2 HULL WIND AREAS Bennett and Associates(BASS) Heading (deg.) 0 30 60 90 120 150 180 Area (m2) 2186 2048 1842 1946 2077 1921 1781 C of E (m) 21.0 21.6 22.1 20.6 19.8 21.5 23.5 Noble Denton(ND) Area C of E (m2) (m) 1680 21.8 1917 21.0 2024 20.0 1932 20.3 2024 20.0 1917 21.0 1680 21.8 % Difference of Wind Area 0.77 0.94 1.10 0.99 0.97 1.00 0.94 Table 4.3 – Hull Wind Areas (KFELS B-Class Jack-up) For LeT 116C Jack-up, BASS's hull wind area was calculated using the projected area resulting from the wind direction being analyzed. GM's hull wind area analysis utilized a linear profile based on 116C wind testing results. BASS agreed to use the GM's hull wind area for this analysis. GM's LeT 116C Jack-up hull wind areas are shown below. Heading (deg) 0 30 60 90 120 150 180 Area ID Area Cs (ft2) C of E (ft) A1 11,248 36.9 A2 1,723 148.2 B1 9,688 35.9 B2 3,867 105.1 C1 9,494 33.4 C2 3,642 103.3 D1 D2 E1 E2 F1 F2 G1 G2 9,139 3,146 8,956 3,580 9,386 4,024 9,214 3,250 30.2 100.1 34.6 104.8 37.7 103.1 34.5 101.7 Table 4.4 – Hull Wind Areas (LeT 116C Jack-up) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 24 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 4.3 FOUNDATION ANALYSIS BASS ND % Difference 1.95 1.95 1.00 Spudcan fixities K1 (t/m) 140,473 140,379 1.00 Spudcan fixities K2 (t/m) 133,190 133,100 1.00 Spudcan fixities K3 (t/m) 2,724,577 2,724,228 1.00 Sand Case Penetration (m) Table 4.5 – Penetration and Spudcan Fixities-Sand Case (KFELS B-Class Jack-up) BASS ND % Difference 34.1 34.1 1.00 Spudcan fixities K1 (t/m) 405,952 386,404 1.05 Spudcan fixities K2 (t/m) 279,138 265,331 1.05 Spudcan fixities K3 (t/m) 15,837,345 15,080,064 1.05 Clay Case Penetration (m) Table 4.6 – Penetration and Spudcan Fixities-Clay Case (KFELS B-Class Jack-up) BASS GM % Difference 2.7 2.7 1.00 Spudcan fixities K1 (t/m) 117,382 117,041 1.00 Spudcan fixities K2 (t/m) 111,296 110,972 1.00 Spudcan fixities K3 (t/m) 1,849,533 1,848,978 1.00 Sand Case Penetration (m) Table 4.7 – Penetration and Spudcan Fixities-Sand Case (LeT 116C Jack-up) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 25 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 BASS GM % Difference 28.8 28.8 1.00 Spudcan fixities K1 (t/m) 330,481 330,108 1.00 Spudcan fixities K2 (t/m) 228,950 228,708 1.00 Clay Case Penetration (m) Spudcan fixities K3 (t/m) 12,278,036 12,267,018 1.00 Table 4.8 – Penetration and Spudcan Fixities-Clay Case (LeT 116C Jack-up) 4.4 DAF CALCULATIONS Item BASS ND % Difference BS DAF(60 deg.) 1.58 1.73 0.91 OTM DAF(60 deg.) 1.86 2.08 0.89 BS DAF(90 deg.) 1.55 1.69 0.91 OTM DAF(90 deg.) 1.81 2.04 0.89 BS DAF(120 deg.) 1.58 1.66 0.95 OTM DAF(120 deg.) 1.91 1.99 0.96 Table 4.9 – DAF Calculations-Sand Case (KFELS B-Class Jack-up) Item BASS ND % Difference BS DAF(60 deg.) 1.58 1.73 0.91 OTM DAF(60 deg.) 1.86 2.08 0.89 BS DAF(90 deg.) 1.55 1.69 0.91 OTM DAF(90 deg.) 1.81 2.04 0.89 BS DAF(120 deg.) 1.58 1.66 0.95 OTM DAF(120 deg.) 1.91 1.99 0.96 Table 4.10 – DAF Calculations-Clay Case (KFELS B-Class Jack-up) BASS agreed to use the ND's DAF values for this analysis. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 26 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Item BASS GM % Difference BS DAF (Sand) 1.05 1.24 0.85 OTM DAF (Sand) 1.12 1.40 0.80 BS DAF (Clay) 1.16 1.14 1.02 OTM DAF (Clay) 1.27 1.35 0.94 Table 4.11 – DAF Calculations (LeT 116C Jack-up) BASS agreed to use the GM's DAF values for this analysis. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 27 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 4.5 FOOTING REACTIONS Heading (deg) BASS 60 90 120 Leg Fh (t) ND Fv (t) M (t-m) Fh (t) Fv (t) BASS ND BASS ND BASS ND Fh Fv M M (t-m) Bow 263 5,687 3,301 258 5,723 5,137 1.02 0.99 0.64 Stbd 254 1,453 3,325 282 1,320 3,021 0.9 1.1 1.1 Port 252 5,781 3,127 260 5,822 4,855 0.97 0.99 0.64 Bow 276 4,309 5,194 286 4,291 6,210 0.97 1 0.84 Stbd 265 1,809 4,042 296 1,615 3,624 0.89 1.12 1.12 Port 228 6,803 0 213 6,958 171 1.07 0.98 0 Bow 283 2,923 5,239 296 2,799 5,165 0.95 1.04 1.01 Stbd 272 2,827 5,211 300 2,692 5,074 0.91 1.05 1.03 Port 226 7,171 0 213 7,372 21 1.06 0.97 0 Table 4.12 – Footing Reactions-Sand Case (KFELS B-Class Jack-up) Heading (deg) BASS 60 90 120 Leg Fh (t) ND Fv (t) M (t-m) Fh (t) Fv (t) BASS ND BASS ND BASS ND Fh Fv M M (t-m) Bow 296 5,311 12,126 296 5,434 10,371 1 0.98 1.17 Stbd 294 2,239 12,914 341 1,924 14,046 0.86 1.16 0.92 Port 287 5,381 12,015 300 5,520 10,115 0.96 0.97 1.19 Bow 312 4,311 13,651 327 4,290 12,773 0.95 1 1.07 Stbd 300 2,492 13,326 343 2,204 14,057 0.88 1.13 0.95 Port 263 6,129 9618 264 6,386 6590 0.99 0.96 1.46 Bow 319 3,284 13,886 346 3,099 13,926 0.92 1.06 1 Stbd 311 3,210 13,852 350 3,019 13,968 0.89 1.06 0.99 Port 254 6,438 8194 243 6,759 3600 1.04 0.95 2.28 Table 4.13 – Footing Reactions-Clay Case (KFELS B-Class Jack-up) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 28 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Heading (deg) BASS 60 90 120 ND BASS GM BASS GM BASS GM Fh Fv M Leg Fh (kN) Fv (kN) M (kN-m) Fh (kN) Fv (kN) M (kN-m) Bow 6,009 42,531 0 5,572 42,705 0 1.08 1 - Stbd 5,592 -4,628 0 6,065 -4,502 0 0.92 1.03 - Port 6,008 43,651 0 5,529 43,867 0 1.09 1 - Bow 6,489 27,186 0 6,334 27,308 0 1.02 1 - Stbd 5,659 -640 0 6,015 -614 0 0.94 1.04 - Port 5,589 55,009 0 4,924 55,377 0 1.14 0.99 - Bow 6,193 11,477 0 6,324 11,599 0 0.98 0.99 - Stbd 6,200 10,326 0 6,315 10,450 0 0.98 0.99 - Port 5,601 59,752 0 4,865 60,027 40 1.15 1 - BASS GM BASS GM BASS GM Fh Fv M Table 4.14 – Footing Reactions-Sand Case (LeT 116C Jack-up) Heading (deg) BASS 60 90 120 ND Leg Fh (kN) Fv (kN) M (kN-m) Fh (kN) Fv (kN) M (kN-m) Bow 1,920 33,972 82,919 125 33,422 96,902 15.36 1.02 0.86 Stbd 1,653 17,878 84,816 249 22,053 96,075 6.64 0.81 0.88 Port 1,913 34,269 82,660 126 33,637 96,902 15.18 1.02 0.85 Bow 2,140 28,691 88,419 182 29,712 97,983 11.76 0.97 0.9 Stbd 1,825 19,083 85,828 144 22,829 97,252 12.67 0.84 0.88 Port 1,683 38,346 74800 169 36,592 97533 9.96 1.05 0.77 Bow 2,174 22,461 88,458 72 25,417 103,357 30.19 0.88 0.86 Stbd 2,157 22,092 88,409 63 25,070 103,332 34.24 0.88 0.86 Port 1,751 41,568 66085 133 38,654 103470 13.17 1.08 0.64 Table 4.15 – Footing Reactions-Clay Case (LeT 116C Jack-up) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 29 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 5. ANALYSIS RESULTS FOR KFELS B-CLASS JACK-UP 5.1 SAND CASE FOR KFELS B-CLASS JACK-UP The environmental base shears & overturning moments for the critical headings are given in Table 5.1. The OTMs are given about the pinpoint. Wave / Current Wind Storm Heading (deg) Inertia P-Delta Total BS KN OTM KNm BS KN OTM KN-m BS KN OTM KN-m OTM KN-m BS KN OTM KNm 60 5,318 757,273 1,293 124,228 944 134,167 141,887 7,554 1,157,555 90 5,211 743,563 1,377 132,097 950 137,381 141,887 7,537 1,154,928 120 5,318 757,273 1,414 134,770 933 133,422 142,497 7,664 1,167,962 Table 5.1 – Environmental Loads The results of the global non-linear analysis, showing footing reactions, are below. Storm heading (deg) 60 90 120 BS Vertical Moment t t t-m Bow 263 5,687 3,301 Stbd 254 1,453 3,325 Port 252 5,781 3,127 Bow 276 4,309 5,194 Stbd 265 1,809 4,042 Port 228 6,803 0 Bow 283 2,923 5,239 Stbd 272 2,827 5,211 Port 226 7,171 0 Leg ID Table 5.2 – Global Footing Reactions 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 30 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The critical storm heading for overturning stability was determined to be 60o. The overturning stability check was based on a hull weight of 10,070 t. The table below summarises the overturning stability check. A resistance factor of 1.05 has been applied. Total OTM (KN-m) Total Factored Righting Moment (KN-m ) Overturning Stability UC 1,157,555 1,463,045 0.79 Table 5.3 – Overturning Stability Checks The storm loading direction giving the largest storm footing reaction was found to be 120o. A resistance factor of 1.10 has been applied. Maximum Storm Vertical Footing Reaction (KN) Factored Preload Capacity at Footing (KN) Preload UC 70,322 63,682 1.10 Table 5.4 – Preload Capacity Check Leg member strength checks (chords and braces) were performed in accordance with ISO/DIS 19905-1. Leg strength UC’s are given below. UC Heading/Leg Leg - Chords 0.86 90o / Port Leg – Diagonal and Horizontal Braces 0.42 90o / Port Table 5.5 – Leg Member Strength Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 31 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The critical storm loading direction for jacking system strength was found to be 120o for the port leg. The check was based on a factored ultimate capacity of 15,502 kips (68,956 KN). Maximum SPFS Storm Vertical Load (KN) 44,799 Factored SPFS Ultimate Capacity (KN) 68,956 Jacking System UC 0.65 Table 5.6 – Jacking System Strength Check Each spudcan foundation bearing capacity/sliding check and utilizations are given below. Bearing Capacity Envelope 10,000 Unfactored Load Capacity Factored Load Capacity Factored Sliding Capacity Unfactored Sliding Capacity Bow Footing Reactions STBD Footing Reactions Port Footing Reaction Origin Capacity Vector for Bow Leg Capacity Vector for STBD Leg Capacity Vector for Port Leg 9,000 Vertical Capacity (tonnes) 8,000 7,000 6,000 5,000 4,000 Origin 3,000 2,000 1,000 0 0 100 200 300 400 500 600 700 800 900 1,000 Horizontal Capacity (tonnes) Figure 5.1 – Spudcan Foundation Bearing Capacity/Sliding Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 32 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Leg Bow STBD Port Magnitude of Capacity Vector 2528 t 2229 t 2772 t Magnitude of Force Vector 2595 t 1673 t 4071 t 1.03 0.75 1.47 UC Table 5.7 – Bearing Capacity/Sliding Utilizations (Sand Case) 5.2 CLAY CASE FOR KFELS B-CLASS JACK-UP The environmental base shears & overturning moments for the critical headings are given in Table 5.23. The OTMs are given about the pinpoint. Wave / Current Wind Inertia P-Delta Total OTM KN-m OTM KN-m BS KN OTM KN-m 605 82,792 86,236 8,605 1,131,951 732,030 599 83,244 88,584 8,578 1,128,842 745,047 574 78,994 91,988 8,660 1,141,725 Storm Heading (deg) BS KN OTM KN-m BS KN OTM KN-m BS KN 60 2,521 217,875 5,479 745,047 90 2,606 224,983 5,372 120 2,607 225,696 5,479 Table 5.8 – Environmental Loads 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 33 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The results of the global non-linear analysis, showing footing reactions, are given below. Storm heading (deg) 60 90 120 BS Vertical Moment (t) (t) (t-m) Bow 296 5,311 12,126 Stbd 294 2,239 12,914 Port 287 5,381 12,015 Bow 312 4,311 13,651 Stbd 300 2,492 13,326 Port 263 6,129 9,618 Bow 319 3,284 13,886 Stbd 311 3,210 13,852 Port 254 6,438 8,194 Leg ID Table 5.9 – Global Footing Reactions The critical storm heading for overturning stability was determined to be 60o. overturning stability check was based on a hull weight of 10,070 t. The The table below summarises the overturning stability check. A resistance factor of 1.05 has been applied. Total OTM (KN-m) Total Factored Righting Moment (KN-m ) Overturning Stability UC 1,131,951 1,737,308 0.65 Table 5.10 – Overturning Stability Checks. The storm loading direction giving the largest storm footing reaction was found to be 120o. A resistance factor of 1.10 has been applied. Maximum Storm Vertical Footing Reaction (KN) Factored Preload Capacity at Footing (KN) Preload UC 63,136 63,682 0.99 Table 5.11 – Preload Capacity Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 34 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Leg member strength checks (chords and braces) were performed in accordance with ISO/DIS 19905-1. Leg strength UC’s are given below. UC Heading/Leg Leg - Chords 0.69 90o / Port Leg – Diagonal and Horizontal Braces 0.41 90o / Port Table 5.12 – Leg Member Strength Check The critical storm loading direction for jacking system strength was found to be 120o for the Port leg. The check was based on a factored ultimate capacity of 15,502 kips (68,956 KN). Maximum SPFS Storm Vertical Load (KN) 34,563 Factored SPFS Ultimate Capacity (KN) 68,956 Jacking System UC 0.50 Table 5.13 – Jacking System Strength Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 35 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Each spudcan foundation bearing capacity/sliding check and utilizations are given below. Bearing Capacity Envelope 10,000 Unfactored Load Capacity Factored Load Capacity Factored Sliding Capacity Unfactored Sliding Capacity Bow Footing Reactions STBD Footing Reactions Port Footing Reaction Origin Capacity Vector for Bow Leg Capacity Vector for STBD Leg Capacity Vector for Port Leg 9,000 Vertical Capacity (tonnes) 8,000 7,000 6,000 5,000 4,000 Origin 3,000 2,000 1,000 0 0 500 1,000 1,500 2,000 2,500 3,000 Horizontal Capacity (tonnes) Figure 5.2 – Spudcan Foundation Bearing Capacity/Sliding Check Leg Bow STBD Port Magnitude of Capacity Vector 3,731 t 1,407 t 3,755 t Magnitude of Force Vector 3,085 t 294 t 4,206 t 0.83 0.21 1.12 UC Table 5.14 – Bearing Capacity/Sliding Utilizations (Clay Case) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 36 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 6. ANALYSIS RESULTS FOR LET 116C JACK-UP Full set of analysis results and any relevant comments on the results of the analyses. Use Tables for this section. 6.1 SAND CASE FOR LET 116C JACK-UP The environmental base shears & overturning moments for the critical headings are given in Table 6.1. The OTMs are given about the pinpoint. Wave / Current Wind Storm Heading (deg) Inertia P-Delta Total BS KN OTM KN-m BS KN OTM KN-m BS KN OTM KN-m OTM KN-m BS KN OTM KN-m 60 12,903 676,025 1,607 158,015 3,097 270,410 101,092 17,607 1,205,541 90 13,027 681,593 1,566 151,328 3,126 272,637 97,851 17,719 1,203,410 120 13,171 691,199 1,662 162,867 3,161 276,480 103,751 17,994 1,234,298 Table 6.1 – Environmental Loads The results of the global non-linear analysis, showing footing reactions, are given in below. Storm heading (deg) 60 90 120 BS Vertical Moment KN KN KN-m Bow 6,009 42,531 0 Stbd 5,592 -4,628 0 Port 6,008 43,651 0 Bow 6,489 27,186 0 Stbd 5,659 -640 0 Port 5,589 55,009 0 Bow 6,193 11,477 0 Stbd 6,200 10,326 0 Port 5,601 59,752 0 Leg ID Table 6.2 – Global Footing Reactions 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 37 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The critical storm heading for overturning stability was determined to be 60o. overturning stability check was based on a hull weight of 6,396 t. The The table below summarises the overturning stability check. A resistance factor of 1.05 has been applied. Total OTM (KN-m) Total Factored Righting Moment (KN-m ) Overturning Stability UC 1,205,541 1,024,432 1.18 Table 6.3 – Overturning Stability Checks The storm loading direction giving the largest storm footing reaction was found to be 120o. A resistance factor of 1.10 has been applied. Maximum Storm Vertical Footing Reaction (KN) Factored Preload Capacity at Footing (KN) Preload UC 59,752 48,543 1.23 Table 6.4 – Preload Capacity Check Leg member strength checks (chords and braces) were performed in accordance with ISO/DIS 19905-1. Leg strength UC’s are given below. UC Heading/Leg Leg - Chords 1.10 90o / Port Leg – Diagonal and Horizontal Braces 1.21 120o / Port Table 6.5 – Leg Member Strength Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 38 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The critical storm loading direction for jacking system strength was found to be 90o for the port leg. The check was based on a factored ultimate capacity of 1,590 kips (7,075 KN). Maximum Pinion Storm Vertical Load (KN) 6,736 Factored Pinion Ultimate Capacity (KN) 7,075 Jacking System UC 0.95 Table 6.6 – Jacking System Strength Check Each spudcan foundation bearing capacity/sliding check and utilizations are given below Bearing Capacity Envelope 10,000 Unfactored Load Capacity Factored Load Capacity Factored Sliding Capacity Unfactored Sliding Capacity Bow Footing Reactions STBD Footing Reactions Port Footing Reaction Origin Capacity Vector for Bow Leg Capacity Vector for STBD Leg Capacity Vector for Port Leg 9,000 Vertical Capacity (tonnes) 8,000 7,000 6,000 5,000 4,000 3,000 Origin 2,000 1,000 0 0 100 200 300 400 500 600 700 800 900 1,000 -1,000 Horizontal Capacity (tonnes) Figure 6.1 – Spudcan Foundation Bearing Capacity/Sliding Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 39 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Leg Bow STBD Port Magnitude of Capacity Vector 1,324 t 1,503 t 1,696 t Magnitude of Force Vector 2,146 t 2,811 t 3,855 t 1.62 1.87 2.27 UC Table 6.7 – Bearing Capacity/Sliding Utilizations (Sand Case) 6.2 CLAY CASE FOR LET 116C JACK-UP The environmental base shears & overturning moments for the critical headings are given in Table 6.8. The OTMs are given about the pinpoint. Wave / Current Wind Storm Heading (deg) Inertia P-Delta Total BS KN OTM KN-m BS KN OTM KN-m BS KN OTM KN-m OTM KN-m BS KN OTM KN-m 60 3,523 309,530 1,484 195,960 493 108,335 47,509 5,500 661,334 90 3,664 317,757 1,452 189,483 513 111,215 46,624 5,629 665,078 120 4,000 349,564 1,530 201,621 560 122,347 57,619 6,091 731,152 Table 6.8 – Environmental Loads 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 40 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 The results of the global non-linear analysis, showing footing reactions, are given below. Storm heading (deg) 60 90 120 BS Vertical Moment KN KN KN-m Bow 1,920 33,972 82,919 Stbd 1,653 17,878 84,816 Port 1,913 34,269 82,660 Bow 2,140 28,691 88,419 Stbd 1,825 19,083 85,828 Port 1,683 38,346 74,800 Bow 2,174 22,461 88,458 Stbd 2,157 22,092 88,409 Port 1,751 41,568 66,085 Leg ID Table 6.9 – Global Footing Reactions The critical storm heading for overturning stability was determined to be 60o. overturning stability check was based on a hull weight of 6,396 t. The The table below summarizes the overturning stability check. A resistance factor of 1.05 has been applied. Total OTM (KN-m) Total Factored Righting Moment (KN-m ) Overturning Stability UC 661,334 1,359,630 0.49 Table 6.10 – Overturning Stability Checks The storm loading direction giving the largest storm footing reaction was found to be 120o. A resistance factor of 1.10 has been applied. Maximum Storm Vertical Footing Reaction (KN) Factored Preload Capacity at Footing (KN) Preload UC 41,568 48,543 0.86 Table 6.11 – Preload Capacity Check Leg member strength checks (chords and braces) were performed in accordance with ISO/DIS 19905-1. Leg strength UC’s are given in below. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 41 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 UC Heading/Leg Leg - Chords 0.48 120o / Port Leg – Diagonal and Horizontal Braces 0.48 120o / Port Table 6.12 – Leg Member Strength Check The critical storm loading direction for jacking system strength was found to be 120o for the port leg. The check was based on a factored ultimate capacity of 1,590 kips (7075 KN). Maximum Pinion Storm Vertical Load (KN) 3,396 Factored Pinion Ultimate Capacity (KN) 7,075 Jacking System UC 0.48 Table 6.13 – Jacking System Strength Check The spudcan foundation bearing capacity/sliding checks and utilizations are given below. Bearing Capacity Envelope 8,000 Unfactored Load Capacity Factored Load Capacity Factored Sliding Capacity Unfactored Sliding Capacity Bow Footing Reactions STBD Footing Reactions Port Footing Reaction Origin Capacity Vector for Bow Leg Capacity Vector for STBD Leg Capacity Vector for Port Leg 7,000 Vertical Capacity (tonnes) 6,000 5,000 4,000 3,000 Origin 2,000 1,000 0 0 500 1,000 1,500 2,000 2,500 Horizontal Capacity (tonnes) Figure 6.2 – Spudcan Foundation Bearing Capacity/Sliding Check 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 42 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 Leg Bow STBD Port Magnitude of Capacity Vector 2,623 t 1,203 t 2,638 t Magnitude of Force Vector 1,711 t 178 t 2,481 t 0.65 0.15 0.94 UC Table 6.14 – Bearing Capacity/Sliding Utilizations (Clay Case) 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 43 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 7. CONCLUSIONS Although the ISO and SNAME results are similar, this could not have been achieved by the parties acting independently. Several checks were made on both units and normalization of results at that point of calculation were needed to obtain similar results. There are several areas where BASS feel there is insufficient guidance to achieve the same level of risk as we would achieve using our methods of normal site assessment using SNAME RP 5-A: Leg to hull connection – relative stiffness of all attachments. Chord robustness versus risk during unusual loading. Better chord to guide interaction and analysis. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 44 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 8. REFERENCES 1. ISO/DIS 19905-1ISO/DIS 19905-1. 2. 2009-12-17 EMAIL FROM JOHN STIFF ENCL2 Benchmarking Sand Site soils data. 3. 2009-12-17 EMAIL FROM JOHN STIFF ENCL3 Benchmark-clay. 4. SACS Software Program Version 5.2.01 – 2005 Engineering Dynamics Inc. 5. Cutdown NDA Phase 1 report to supply B-Class data. 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 45 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 APPENDIX A: KFELS B-CLASS Jack-up Hydrodynamic Coefficient Calculations 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 46 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 47 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 48 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 APPENDIX B: LET 116C Jack-Up Hydrodynamic Coefficient Calculations 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 49 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 50 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 51 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 APPENDIX C: KFELS B-CLASS Jack-Up Partial Sacs Fem Listing LDOPT SFINOPFL+Z64.2 490.0 111.8 245.0 GLOBEN OPTIONS EN SDUC 1 1 0 PTPTPTPT PTPT LCSEL ST 27 UCPART 0.00.6 .6 1.0 1.0 AMOD AMOD 24 1.333 25 1.333 26 1.333 27 1.333 28 1.333 29 1.333 30 1.333 SECT SECT CODMEMB PRI198.189154.3 5292.93 4607.01 7.0 15.794110.056.8 SECT JK1MEMB PRI817.0 356500.0340100.01550000. 72.9 130.0 384.0216.0 SECT JK2MEMB PRI564.5 142000.0190800.01191000. 51.0 124.0 286.5144.0 SECT MEMBHBB BOX 15.0 2.0 24.0 2.0 SECT MEMBL11 PRI558.0 1.000+099122000.1.000+09 380.0 144.0 1000.360.0 SECT MEMBL13 PRI662.1 1.000+091.318+071.000+09 385.6 300.0 1000.270.0 SECT MEMBL14 PRI837.361.000+091.685+071.000+09 418.0 480.0 1000.270.0 SECT MEMBL17 PRI819.721.000+091.750+071.000+09 406.0 480.0 1000.225.0 SECT MEMBL18 PRI662.1 1.000+091.318+071.000+09 385.0 480.0 1000.270.0 SECT MEMBL19 PRI243.0 1.000+092250000.1.000+09 270.0 72.0 1000.95.0 SECT MEMBL20 PRI243.0 1.000+092250000.1.000+09 270.0 72.0 1000.95.0 SECT MEMBLEG PRI582.962723133.2.082+092.082+09 468.0 600.0 74.6 74.6 SECT MEMBLWL PRI330.0 1.000+094354565.1.000+09 288.0 120.0 1000.180.0 SECT MEMBSMR PRI1500.01.000+091.000+091.000+09 100.0 100.0 3000.3000. SECT MEMBSS1 PRI276.841.000+094986476.1.000+09 404.0 120.0 1000.135.0 SECT MEMBSS2 PRI624.6 1.000+091.710+071.000+09 408.76 300.0 1000.270.0 SECT MEMBT10 PRI347.761.000+096710000.1.000+09 412.54 180.0 1000.135.0 SECT MEMBT11 PRI505.261.000+099090000.1.000+09 380.0 180.0 1000.270.0 SECT MEMBT12 PRI864.0 1.000+091.483+071.000+09 363.0 144.0 1000.540.0 SECT MEMBTR1 PRI243.2 1.000+092253058.1.000+09 272.0 120.0 1000.94.5 SECT MEMBTR2 PRI274.681.000+092420000.1.000+09 269.7 120.0 1000.126.0 SECT MEMBTR3 PRI531.841.000+098520000.1.000+09 362.6 300.0 1000.360.0 SECT MEMBTR4 PRI373.681.000+096250000.1.000+09 386.0 240.0 1000.225.0 SECT MEMBTR5 PRI463.681.000+098948000.1.000+09 412.0 240.0 1000.180.0 SECT MEMBTR6 PRI463.681.000+098948000.1.000+09 412.54 240.0 1000.180.0 SECT MEMBTR7 PRI297.0 1.000+095050000.1.000+09 400.0 72.0 1000.180.0 SECT MEMBTR8 PRI347.761.000+096710000.1.000+09 412.0 180.0 1000.135.0 SECT MEMBTR9 PRI390.3 1.000+097740000.1.000+09 416.0 216.0 1000.135.0 SECT PINMEMB PRI20.0 20.0 168.5 168.5 20.0 20.0 144.8144.8 SECT RCMMEMB PRI400.0 100000.08926.5 7866.8 20.0 20.0 105.03000. GRUP GRUP CMR MEMBSMR 29.0 11.6 100.0 1 1.0 1.0 1.0 .001 GRUP C01 CODMEMB 29.0 11.6 100.0 1 .9 .9 1.0 N620.0 GRUP C02 CODMEMB 29.0 11.6 100.0 1 .9 .9 1.0 N620.0 GRUP C03 CODMEMB 29.0 11.6 100.0 1 .9 .9 1.0 N620.0 GRUP C04 CODMEMB 29.0 11.6 100.0 1 .9 .9 1.0 N620.0 GRUP COD CODMEMB 29.0 11.6 100.0 1 .9 .9 1.0 N620.0 GRUP DBR 18.0 .75 29.0 11.6 52.0 1 1.0 1.0 .5 N.001 GRUP HB1 9.625 1.25 29.0 11.6 65.0 1 .8 .8 .5 N546.23 GRUP HB2 9.625 1.5 29.0 11.6 65.0 1 .8 .8 .5 N546.23 GRUP HBB MEMBHBB 29.0 11.6 52.0 1 1.0 1.0 .5 N.001 GRUP IDB 6.625 .432 29.0 11.6 34.0 1 1.0 1.0 .5 N546.43 GRUP JK1 JK1MEMB 29.0 11.6 52.0 1 1.661.66 1.0 N.001 GRUP JK2 JK2MEMB 29.0 11.6 52.0 1 5.0 5.0 1.0 N.001 GRUP KB1 9.625 1.0 29.0 11.6 65.0 1 .8 .8 .5 N546.23 GRUP KB2 9.625 1.25 29.0 11.6 65.0 1 .8 .8 .5 N546.23 GRUP L11 MEMBL11 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L13 MEMBL13 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L14 MEMBL14 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L15 MEMBL14 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L16 MEMBL14 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L17 MEMBL17 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L18 MEMBL18 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L19 MEMBL19 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP L20 MEMBL20 29.0 11.6 34.0 1 1.0 1.0 1.0 .001 GRUP LEG MEMBLEG 29.0 11.6 100.0 1 1.0 1.0 .5 N3115.0 GRUP LGM MEMBSMR 29.0 11.6 100.0 1 1.0 1.0 1.0 .001 GRUP LWL MEMBLWL 29.0 11.6 51.0 1 1.0 1.0 1.0 .001 GRUP PIN PINMEMB 29.0 11.6 52.0 1 1.0 1.0 1.0 N.001 GRUP RCM RCMMEMB 29.0 11.6 100.0 1 1.0 1.0 1.0 .001 GRUP SMR MEMBSMR 29.0 11.6 100.0 1 1.0 1.0 1.0 .001 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 52 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 GRUP SS1 MEMBSS1 GRUP SS2 MEMBSS2 GRUP T10 MEMBT10 GRUP T11 MEMBT11 GRUP T12 MEMBT12 GRUP TR1 MEMBTR1 GRUP TR2 MEMBTR2 GRUP TR3 MEMBTR3 GRUP TR4 MEMBTR4 GRUP TR5 MEMBTR5 GRUP TR6 MEMBTR6 GRUP TR7 MEMBTR7 GRUP TR8 MEMBTR8 GRUP TR9 MEMBTR9 GRUP UGM MEMBSMR GRUP VB1 9.625 1.0 GRUP VB2 6.625 .432 GRPOV GRPOV CMR N GRPOV C01 N GRPOV C02 N GRPOV C03 N GRPOV C04 N GRPOV COD N GRPOV DBR N GRPOV HBB N GRPOV HB1 N GRPOV KB1 N GRPOV HB2 N GRPOV KB2 N GRPOV IDB N GRPOV JK1 N GRPOV JK2 N GRPOV L11 N GRPOV L13 N GRPOV L14 N GRPOV L15 N GRPOV L16 N GRPOV L17 N GRPOV L18 N GRPOV L19 N GRPOV L20 N GRPOV LEG N GRPOV LGM N GRPOV LWL N GRPOV PIN N GRPOV RCM N GRPOV SMR N GRPOV SS1 N GRPOV SS2 N GRPOV T10 N GRPOV T11 N GRPOV T12 N GRPOV TR1 N GRPOV TR2 N GRPOV TR3 N GRPOV TR4 N GRPOV TR5 N GRPOV TR6 N GRPOV TR7 N GRPOV TR8 N GRPOV TR9 N GRPOV UGM N GRPOV VB1 N GRPOV VB2 N LOAD LOADCN 1 LOAD 4101 LOAD 4103 LOAD 4105 LOAD 4301 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 -2466.8 -2466.8 -2466.8 -2466.8 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 100.0 65.0 65.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .001 12.0 12.0 12.0 12.0 12.0 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 12.0 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 12.0 12.0 12.0 12.0 12.0 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 12.0 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .8 .8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .8 .8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .5 .5 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 N546.23 N546.23 .001.001.001.001 5.095.0914.314.3 5.095.0914.314.3 5.095.0914.314.3 5.095.0914.314.3 3.5 3.5 13.113.1 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 18.018.046.446.4 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 .001.001.001.001 GLOB GLOB GLOB GLOB JOIN JOIN JOIN JOIN ELEVATED ELEVATED ELEVATED ELEVATED Page 53 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 LOAD LOAD LOAD LOAD LOAD LOADCN WAVE WAVE LCOMB LCOMB LCOMB LCOMB LCOMB LCOMB LCOMB LCOMB END 4303 4305 4201 4203 4205 5 -2466.8 -2466.8 -2466.8 -2466.8 -2466.8 STOK47.3 24 25 26 27 28 29 30 1 1 1 1 1 1 1 245.0 13.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2 3 4 5 6 7 8 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. 1.150 1.150 1.150 1.150 1.150 1.150 1.150 GLOB GLOB GLOB GLOB GLOB 90.0 9 10 11 12 13 14 15 1.527 1.415 1.537 1.508 1.531 1.526 1.411 D-60.0 16 17 18 19 20 21 22 2.580 2.987 1.891 1.674 1.890 2.255 3.407 23 23 23 23 23 23 23 5.0 JOIN JOIN JOIN JOIN JOIN ELEVATED ELEVATED ELEVATED ELEVATED ELEVATED 72MM10 1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Page 54 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 APPENDIX D: LET 116C Jack-Up Partial Sacs Fem Listing LDOPT INOPFL+Z64.2 490.0 94.5 252.5 GLOBEN OPTIONS EN SDUC 1 1 0 PTPTPTPT PTPT LCSEL ST 26 UCPART 0.00.6 .6 1.0 1.0 AMOD AMOD 24 1.333 25 1.333 26 1.333 27 1.333 28 1.333 29 1.333 30 1.333 SECT SECT CD1MEMB PRI165.969268.0 14254.086522.26 22.8 28.0 56.0 56.0 SECT CD2MEMB PRI165.969268.0 14254.086522.26 22.8 28.0 56.0 56.0 SECT CD3MEMB PRI165.969268.0 14254.086522.26 22.8 28.0 56.0 56.0 SECT CD4MEMB PRI165.969268.0 14254.086522.26 22.8 28.0 56.0 56.0 SECT GAPMEMB PRI.45 1.000+091.000+091.000+09 200.0 200.0 200.0200.0 SECT H01MEMB PRI309.6 9.610+084403000.1.000+09 100.0 100.0 150.0150.0 SECT H02MEMB PRI302.4 9.610+084356000.1.000+09 100.0 100.0 150.0150.0 SECT H03MEMB PRI401.769.610+087.104+071.000+09 100.0 100.0 200.0200.0 SECT H04MEMB PRI891.369.610+081.649+071.000+09 100.0 100.0 495.0495.0 SECT H05MEMB PRI878.4 9.610+081.495+071.000+09 100.0 100.0 440.0440.0 SECT H06MEMB PRI1742.49.610+082.977+071.000+09 100.0 100.0 870.0870.0 SECT H08MEMB PRI760.329.610+081.396+071.000+09 100.0 100.0 380.0380.0 SECT H09MEMB PRI302.4 9.610+083988000.1.000+09 100.0 100.0 150.0150.0 SECT H11MEMB PRI717.129.610+081.348+071.000+09 100.0 100.0 360.0360.0 SECT H12MEMB PRI612.0 9.610+081.009+071.000+09 100.0 100.0 305.0305.0 SECT H13MEMB PRI260.649.610+083419000.1.000+09 100.0 100.0 130.0130.0 SECT H14MEMB PRI215.469.610+081244000.1.000+09 100.0 100.0 110.0110.0 SECT H15MEMB PRI15500.1.000+091.000+091.000+09 100.0 100.0 1000.1000. SECT HB1MEMB TUB 12.75 .75 SECT HB2MEMB TUB 12.75 .75 SECT HB3MEMB TUB 12.75 .5 SECT JPBMEMB PRI244.0 333000.033000.0 300000.0 51.0 124.0 286.5144.0 SECT JTBMEMB PRI54.0 2140.74 2279.0 937.0 18.0 11.0 22.0 36.0 SECT KB1SECT TUB 12.75 .75 SECT KB2SECT TUB 12.75 .75 SECT KB3SECT TUB 12.75 .5 SECT MEMBLEG PRI900.027953807.1.596+091.596+09 336.0 336.0 140.9140.9 SECT MEMBLWL PRI1.0+051.000+091.000+091.000+09 288.0 120.0 1000.180.0 SECT MEMBSMR PRI1500.01.000+091.000+091.000+09 100.0 100.0 3000.3000. GRUP GRUP CD1 CD1MEMB 29.0 11.6 75.0 1 .8 .8 .5 N490.0 GRUP CD2 CD2MEMB 29.0 11.6 75.0 1 .8 .8 .5 N490.0 GRUP CD3 CD1MEMB 29.0 11.6 75.0 1 .8 .8 .5 N490.0 GRUP CD4 CD2MEMB 29.0 11.6 75.0 1 .8 .8 .5 N490.0 GRUP CMR MEMBSMR 29.0 11.6 36.0 1 1.0 1.0 .5 N.001 GRUP GAP GAPMEMB 29.0 11.6 85.0 1 1.0 1.0 .5 N.001 GRUP H01 H01MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H02 H02MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H03 H03MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H04 H04MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H05 H05MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H06 H06MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H08 H08MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H09 H09MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H11 H11MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H12 H12MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H13 H13MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H14 H14MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP H15 H15MEMB 29.0 11.6 36.0 1 1.0 1.0 1.0 .001 GRUP HB1 HB1MEMB 29.0 11.6 90.0 1 .65 .65 .5 N490.0 GRUP HB2 HB2MEMB 29.0 11.6 90.0 1 .65 .65 .5 N490.0 GRUP HB3 HB3MEMB 29.0 11.6 90.0 1 .65 .65 .5 N490.0 GRUP IDB 8.625 .375 29.0 11.6 90.0 1 .8 .8 .5 N490.0 GRUP JBB 18.0 .75 29.0 11.6 52.0 1 1.0 1.0 .5 N.001 GRUP JPB JPBMEMB 29.0 11.6 52.0 1 1.0 1.0 1.0 N.001 GRUP JTB JTBMEMB 29.0 11.6 52.0 1 1.0 1.0 .5 N.001 GRUP KB1 KB1SECT 29.0 11.6 90.0 1 .65 .65 .5 N490.0 GRUP KB2 KB2SECT 29.0 11.6 90.0 1 .65 .65 .5 N490.0 GRUP KB3 KB3SECT 29.0 11.6 90.0 1 .65 .65 .5 N490.0 GRUP LEG MEMBLEG 29.0 11.6 88.0 1 1.0 1.0 .5 N2422.1 GRUP LGM MEMBSMR 29.0 11.6 36.0 1 1.0 1.0 .5 N.001 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. Page 55 LeTourneau 116C and KeppelFELS B-Class Phase 2 Benchmarking of ISO 19905-1 GRUP LHC MEMBSMR 29.0 11.6 36.0 GRUP LWL MEMBLWL 29.0 11.6 51.0 GRUP PIN MEMBSMR 29.0 11.6 36.0 GRUP UGM MEMBSMR 29.0 11.6 36.0 GRPOV GRPOV CD1 N 12.0 GRPOV CD2 N 12.0 GRPOV CD3 N 12.0 GRPOV CD4 N 12.0 GRPOV CMR N .001 GRPOV GAP N .001 GRPOV H01 N .001 GRPOV H02 N .001 GRPOV H03 N .001 GRPOV H04 N .001 GRPOV H05 N .001 GRPOV H06 N .001 GRPOV H08 N .001 GRPOV H09 N .001 GRPOV H11 N .001 GRPOV H12 N .001 GRPOV H13 N .001 GRPOV H14 N .001 GRPOV H15 N .001 GRPOV HB1 N .001 GRPOV HB2 N .001 GRPOV HB3 N .001 GRPOV IDB N .001 GRPOV JBB N .001 GRPOV JPB N .001 GRPOV JTB N .001 GRPOV KB1 N .001 GRPOV KB2 N .001 GRPOV KB3 N .001 GRPOV LEG N 12.0 GRPOV LGM N .001 GRPOV LHC N .001 GRPOV LWL N .001 GRPOV PIN N .001 GRPOV UGM N .001 LOAD LOADCN 1 LOAD 4101 -1175.0 LOAD 4102 -1175.0 LOAD 4103 -1175.0 LOAD 4104 -1175.0 LOAD 4201 -1175.0 LOAD 4202 -1175.0 LOAD 4203 -1175.0 LOAD 4204 -1175.0 LOAD 4301 -1175.0 LOAD 4302 -1175.0 LOAD 4303 -1175.0 LOAD 4304 -1175.0 LOADCN 4 CURR CURR 0.000 0.00060.0 CURR 49.0 .96 60.0 CURR 126.3 1.04 60.0 CURR 252.5 1.12 60.0 WAVE WAVE STOK31.8 252.5 10.0 60.0 LCOMB LCOMB 24 1 1.000 2 1.150 9 0.550 16 LCOMB 25 1 1.000 3 1.150 10 0.568 17 LCOMB 26 1 1.000 4 1.150 11 0.531 18 LCOMB 27 1 1.000 5 1.150 12 0.524 19 LCOMB 28 1 1.000 6 1.150 13 0.564 20 LCOMB 29 1 1.000 7 1.150 14 0.546 21 LCOMB 30 1 1.000 8 1.150 15 0.534 22 END 709-J-IO-RPT-001 © 2010 Bennett & Associates, L.L.C. 1 1 1 1 1.0 1.0 1.0 1.0 12.0 12.0 12.0 12.0 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 12.0 .001 .001 .001 .001 .001 1.0 1.0 1.0 1.0 .5 1.0 .5 1.0 N.001 .001 N.001 .001 8.438.4325.025.0 8.438.4325.025.0 7.177.1724.124.1 7.177.1724.124.1 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 33.733.7100.100. .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 .001.001.01 .01 GLOB GLOB GLOB GLOB GLOB GLOB GLOB GLOB GLOB GLOB GLOB GLOB D-60.0 0.903 0.751 0.869 0.736 0.953 0.738 0.821 23 23 23 23 23 23 23 5.0 JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN JOIN HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT HULLWT 72MM10 1 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Page 56
© Copyright 2026 Paperzz