Generalized Witt groups - SISSA People Personal Home Pages

GENERALIZED
B.
A.
WITT
GROUPS
UDC 519.4
Dubrovin
In t h i s p a p e r we c o n s t r u c t a f u n c t o r f r o m t h e c a t e g o r y o f o n e - d i m e n s i o n a l c o m m u t a t i v e f o r m a l g r o u p s to t h e c a t e g o r y o f t o p o l o g i c a l A b e l i a n g r o u p s . F o r a m u l t i p l i c a t i v e f o r m a l g r o u p ,
t h i s f u n c t i o n is t h e u s u a l W i t t f u n c t o r . W e s t u d y c e r t a i n p r o p e r t i e s of the c o n s t r u c t e d tune=
t o r . T h i s f u n c t o r i s t h e n u s e d to d e s c r i b e m u l t i p l i c a t i v e o p e r a t i o n s in the t h e o r y of u n i t a r y
cobordisms.
1.
BASIC
DEFINITIONS
1. L e t R be a c o m m u t a t i v e a s s o c i a t i v e r i n g with u n i t y , R[[X, Y]] the r i n g of f o r m a l p o w e r s e r i e s in
two v a r i a b l e s , F(X, Y) ~ R[[X, Y]], a o n e - d i m e n s i o n a l c o m m u t a t i v e f o r m a l g r o u p o v e r R, I(X) 6 R[[X]] i t s
i n v e r s e e l e m e n t , and
~
o(x) = /lZ=op
Xi\
)dx
(1.1)
its c a n o n i c a l i n v a r i a n t d i f f e r e n t i a l (P0 = 1). If R is a Q - a l g e b r a t h e r e t h e n e x i s t s a s e r i e s
l(X)=
=oi+l
X i+l s u c h t h a t w(X) = dl(X) and
y ( x , Y) = z-I (1 ( x ) + t (Y))
(1.2)
( s e e [2]). T h e s y m b o l A w i l l d e n o t e the t o p o l o g i c a l s p a c e of f o r m a l p o w e r s e r i e s o v e r R w i t h o u t a f r e e
t e r m , with t h e u s u a l t o p o l o g y o f f o r m a l p o w e r s e r i e s . We i m p o s e on A t h e s t r u c t u r e of a n A b e l i a n t o p o l o g i c a l g r o u p A(R, F), s e t t i n g
(l + Fg)(X) = F (1 (X), g (X)).
I t is t r i v i a l to c h e c k t h a t t h e a x i o m s of a t o p o l o g i c a l g r o u p h o l d .
L E M M A 1.4.
Let
] ( x ) --~,~i~ a~x l .
(1.3)
L e t R not h a v e e l e m e n t s of finite o r d e r .
T h e n , t h e s e r i e s f ( X ) i s u n i q u e l y r e p r e s e n t e d in t h e f o r m
~e
] ( X ) = ~=1F:~iXi"
(1.5)
M o r e o v e r , if a m is t h e f i r s t n o n z e r o c o e f f i c i e n t i n f ( X ) t h e n oq = ai w h e n i -< m .
P r o o f . E x p r e s s i o n (1.5) is m e a n i n g f u l s i n c e its r i g h t s i d e c o n v e r g e s in g r o u p A{R, F). W e h a v e a n
equation over
( o~ a~X~ )
| e: z,Z=
=
~
l(:x~X~)"
From this we have
a,,,X "~ + o (X'?) =
~,,,X'" + o (X"~),
i.e., a m = am, which means that
cc
i
--
(1.6)
M. V. L o m o n o s o v M o s c o w S t a t e U n i v e r s i t y . T r a n s l a t e d f r o m M a t e m a t i c h e s k i e Z a m e t k i , V o l . 13,
No. 3, pp. 4 1 9 - 4 2 6 , M a r c h , 1973. O r i g i n a l a r t i c l e s u b m i t t e d O c t o b e r 22, 1971.
9 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.
253
Now a p p l y i n g t h e s e r i e s f o r l to b o t h s i d e s of (1.6), we o b t a i n
c~
F (/(X), I (amXm)) = ~'i=m+l FaiX~"
(1.7)
But, t h e left s i d e of {1.7) i s a s e r i e s o v e r R w h i c h b e g i n s with a p o w e r g r e a t e r t h a n m .
the p r o o f is a n o b v i o u s i n d u c t i o n .
C O R O L L A R Y 1.8.
E x a m p l e 1.9.
A (R,
F) c A (R |
0,
T h e r e m a i n d e r of
F) is a s u b g r o u p .
L e t F m ( X , Y) = X + Y - XY be a m u l t i p l i c a t i v e f o r m a l g r o u p .
C o n s i d e r the m a p p i n g
: A-+R[[X]],
setting ]-+l--f
i X ) . T h e n , (/ + Fg)(X) = ] ( X ) + g ( X ) - - ] ( X ) g i X ) --> [l - - ] (X)l[i - g(X)], i . e . , k is a c o n t i n u o u s m o n o m o r p h i s m of g r o u p A ( R , F m) into the m u l t i p l i c a t i v e g r o u p of i n v e r t i b l e
e l e m e n t s of r i n g R[[X]].
2. D e f i n i t i o n 2.1. We c a l l the g e n e r a l i z e d W i t t g r o u p W(R, F) t h e s e t of i n f i n i t e v e c t o r s x = (x 1, x 2,
. . .), w h e r e xi ~ RVi, with the m a p p i n g s
w~(x) = ~ l ,
dp~_x~/d,
n = l, 2
(2.2)
d
d e f i n i n g a c o l l e c t i o n of h o m o m o r p h i s m s
in t h e a d d i t i v e g r o u p of r i n g R.
We s h a l l c a l l x 1, x 2, . . . the t r u e c o o r d i n a t e s of v e c t o r x, w h i l e w l ( x ) , w2(x), . . . a r e i l l u s o r y c o o r d i n a t e s . It f o l l o w s f r o m (2.2) t h a t the t r a n s i t i o n f r o m t r u e to i l l u s o r y c o o r d i n a t e s is i n v e r t i b l e o v e r t h e r i n g
R | Q, i . e . , a d d i t i o n in g r o u p W(R | Q, F) is u n i v o c a l l y d e f i n e d b y (2.1). W e now show t h a t W(R, F) is a s u b g r o u p in W(R | Q, F).
D e f i n i t i o n 2.3.
M a p p i n g E : W(R, F) --~ R[[X]] @ Q, d e f i n e d b y t h e f o r m u l a
(~
t
X,~)
(2.4)
is called the Artin-Hasse exponent.
T H E O R E M 2.5. T h e A r t i n - H a s s e e x p o n e n t d e f i n e s a n i s o m o r p h i s m of t h e g r o u p s E : W(R, F)
A ( R , F).
Proof.
F r o m (2.4) w e h a v e :
== l -t l1 (g (x)) + l (E (Y))I = E (x) + Pg (g).
(2.6)
Fu r t h e r m o r e :
Ix1 ~
/ t x7
%
.
,~la\
=
-
T h e t h e o r e m now f o l l o w s f r o m (2.6), (2.7), and L e m m a 1.4.
C O R O L L A R Y 2.8. T h e s t r u c t u r e of t h e g r o u p on W(R, F) i s u n i v o e a l l y d e f i n e d b y (2.1).
T h e p r o o f f o l l o w s d i r e c t l y f r o m (1.8) and (2.5).
E x a m p l e 2.9. F o r g r o u p F m o f e x a m p l e (1.9) we h a v e : Pi = 1 f o r i = 1, 2 . . . . .
i . e . , f o r m u l a s (2.2)
assume the form
w~ (x) = E.~/,dx~/d. C o n s e q u e n t l y , g r o u p W(R, F m) is the a d d i t i v e g r o u p of a W i t t r i n g
( s e e [1]). T h i s m o t i v a t e d o u r c h o i c e of n a m e f o r g r o u p W(R, F).
In W(R, F) w e i n t r o d u c e t h e t o p o l o g y i n d u c e d b y the n a t u r a l v a l u a t i o n : v(x) = n, if x n is t h e f i r s t n o n z e r o t r u e c o o r d i n a t e . T h e n , E b e c o m e s an i s o m o r p h i s m of t o p o l o g i c a l g r o u p s .
L e t F be t h e c a t e g o r y w h o s e o b j e c t s a r e t h e p a i r s (R, F), with F b e i n g a f o r m a l g r o u p o v e r r i n g R.
A m o r p h i s m f of c a t e g o r y F is a r i n g h o m o m o r p h i s m f :
R1 -~ R2, w h e r e F 2 = F ( , i . e . , F 2 i s o b t a i n e d b y
a p p l y i n g f to t h e c o e f f i c i e n t s of F I. We note t h a t then p~2 = f ( P i F i ) w h e r e P i i s a e f i n e d b y (1.1). W e d e f i n e
W ( f ) : W(R I, F 1) ~ W(R 2, F2), s e t t i n g W ( f ) (x 1, x 2. . . . )t= ( f ( x l ) , f ( x 2 ) . . . . ). T h i s , o b v i o u s l y , i s a c o n t i n u ous i s o m o r p h i s m of t h e g r o u p s .
254
T h e r e is a u n i v e r s a l o b j e c t ( s e e [3]) in c a t e g o r y F . W e d e n o t e it b y t h e s y m b o l (L, U). S i n c e L is a
t o r s i o n - f r e e r i n g we h a v e t h e n d e f i n e d t h e g r o u p W ( L , U). If, now, (R, F) is a n o b j e c t of F and f : (L, U) --~
(R, F) is t h e c a n o n i c a l h o m o m o r p h i s m , t h e n W ( R , F) is d e f i n e d a s the i m a g e o f g r o u p W ( L , U) u n d e r the
h o m o m o r p h i s m of W ( f ) into t h e s e t of a l l v e c t o r s w i t h c o o r d i n a t e s i n R . T h u s , W b e c o m e s a f u n c t o r f r o m
c a t e g o r y F to t h e c a t e g o r y of t o p o l o g i c a l A b e l i a n g r o u p s and t h e i r c o n t i n u o u s h o m o m o r p h i s m s .
2.
ENDOMORPHISMS
OF
FUNCTOR
W
1. D e f i n i t i o n 1.1. We d e f i n e t h e f a m i l y of m a p p i n g s b y s h i f t Vn: W ~ W, s e t t i n g
Xrn ,
(v~ (x))~
=
if
0
LEMMA 12.
Proof.
Vnisamonomorphismforn
nlrn ,
(1.2)
w
otherwise
= 1, 2, . . . .
W e c o m p u t e the a c t i o n of Vn on t h e i l l u s o r y c o o r d i n a t e s .
wra (Vn (x)) = ~-~Jdl,n dP rn
- 1 a'ct/n
~/~
We have:
)
d
i .e.,
Wr~ (Vn (x)) :
I~k'=rn/n
nh'p~-lx~ = nWm/n (x),
[ 0
if n Im,
otherwise
(1.4)
T h e a s s e r t i o n o f t h e [ e m m a t h e n f o l l o w s f r o m t h e o b v i o u s i n j e c t i v e n e s s of m a p p i n g (1.2) and the a d d i t i v i t y
o f e x p r e s s i o n (1.4).
D e f i n i t i o n 1.5. We d e f i n e t h e f a m i l y of F r o b e n i u s m a p p i n g s Fn: W ~ W b y t h e i r a c t i o n on i s o m o r p h i c g r o u p A . L e t ~l . . . . .
~n be t h e f o r m a l n - t h r o o t s o f X. We s e t
F,~ (1 (X)) = ~ 1
F/(~0"
(1.6)
T h e r i g h t s i d e o f (1.6), b e i n g s y m m e t r i c in t h e ~i b y v i r t u e o f the c o m m u t a t i v i t y of g r o u p F, is t h e k e r n e l
o f R[[XJ]. T h e a d d i t i v i t y of m a p p i n g F n i s o b v i o u s .
L E M M A 1.7.
w,~
( F . (x)) = w~n (5).
(1.S)
P r o o f . Due to the s i m p l i c i t y o f t h e c o m p u t a t i o n s w e v e r i f y o u r a s s e r t i o n on e l e m e n t E((1, 0 . . . .
X. We h a v e :
F . ( X ) = Z-1(t(~1) + . . .
Pl
+ --~ ( ~ + 9
+ Z(~.)) = Z- 1 ( ( ~ + . . . +
+ ~'~
..) + ...)
) = Pm-l"
T H E O R E M 1.9.
~.)+
\
= l -a (p,~_~X + p ~_~ X 2 +
I
But, Wm(1, 0, 0 . . . .
)) =
. .).
2
Now, (1.8) f o l l o w s f r o m t h e p r e v i o u s c o m p u t a t i o n s and (1.2.4).
V n and F n h a v e t h e f o l l o w i n g p r o p e r t i e s :
(1) V m ~ Vn = V m n ,
(2) F m ~ Fn = F m n ,
(3) Fn ~ V m = V m ~ Fn w h e n (m, n) = 1,
(4) F n o V n is m u l t i p l i c a t i o n b y n in Z - m o d u l e W,
(5) ( l / n ) V n o F n i s t h e p r o j e c t o r of w ( R @ Q, F) on v e c t o r x s u c h t h a t wm(x) = 0 w h e n
(6) ~ - _ ~ , (~,p)=l ~(n)
~- V~ol~'n is t h e p r o j e c t o r of W(R |
n ~m,
Zp, F) on v e c t o r x s u c h t h a t Wm(X) = 0 w h e n
m ~ ph (p is the MSbius function).
Proof. By virtue of (1.4) and (1.8), the action of Fn and Vn on illusory components in generalized
Witt groups is identical to the action of the shift and Frobenius homomorphisms in ordinary Witt groups.
255
With this in mind, we r e d u c e a s s 3 r t i o n s (1)-(6) of the t h e o r e m to the c o r r e s p o n d i n g a s s e r t i o n s about o r d i n a r y Wttt g r o u p s , p r o v e n by c o m p u t a t i o n s on the i l l u s o r y c o m p o n e n t s {see, for e x a m p l e , [1]).
Now, let r i n g R be an a l g e b r a o v e r the r i n g of p - a d i c i n t e g e r Zp.
Definition 1.10.
F o r m a l group F is p - t y p i c a l if, in group W(R, F), win(x) = 0 when m ~ ph.
T h e e q u i v a l e n c e of this definition with that given by C a r t i e r (see [4]) follows i m m e d i a t e l y f r o m (1.8).
T H E O R E M 1.11.
L e t / p ( X ) = E(Trp(1)). Then, f o r m a l group Gp(X, Y) = f p i F ( f p ( X ) , f p ( Y ) ) is p - t y p i -
cal.
Proof.
Follows d i r e c t l y f r o m a s s e r t i o n (6) of T h e o r e m (1.9).
3.
CONNECTION
WITH
I. Let F(u, v) be the formal group of geometric
g (~) =
TOPOLOGY
cobordisms,
and
y;(_o
(1.11
its l o g a r i t h m (Mishchenko s e r i e s ) (see [6]). H e r e , u E U*(CP ~176= ~2U [[u]] is a u n i v e r s a l e l e m e n t , i.e., in
this c a s e the c o e f f i c i e n t s of the i n v a r i a n t d i f f e r e n t i a l (1.1.1) have the f o r m Pi = [ c p i ] , and f o r m u l a s (1.2.2)
take the f o r m
w~ (x) = ~'dl,~d tOP'S/d-11 z~ z.
(1.2)
LEMMA 1.3. Let q E A U @ Q be the m u l t i p l i c a t i v e o p e r a t i o n in the t h e o r y of u n i t a r y c o b o r d i s m s ;
then, r
= g(u).
By definition, g(u) is a p r i m i t i v e e l e m e n t u n d e r the m a p p i n g
induced by the H - s t r u c t u r e on C P ~ . Any o p e r a t i o n of AU
the m u l t i p l i c a t i v e o p e r a t i o n t a k e s p r i m i t i v e e l e m e n t s into p r i m i t i v e ones.
e l e m e n t s is o n e - d i m e n s i o n a l and, s i n c e q~(g(u)) = u + o(u), then ~(g(u)) =
U* (CP =) Q O-+ U* (CP ~)
Proof.
U* (CP ~) (~ Q,
c o m m u t e s with the diagonal, i.e.,
But, the ~ u - m o d u l e of p r i m i t i v e
g(u).
Let q~(u) be a f o r m a l p o w e r s e r i e s i n f ( u ) . As is known (see [6]), f r o m the s e r i e s / (u) ~ fLv[[u]] @ Q
one r e c o n s t i t u t e s , u n i v o c a l l y , the m u l t i p l i c a t i v e o p e r a t i o n ~o E AU | Q. We d e n o t e b y g~(u) the s e r i e s o b tained f r o m g(u) by the a c t i o n of ~ on its c o e f f i c i e n t s . We h a v e :
g (u) = ~ (g (u)) = g= (/(u)),
consequently,
g (]-1 (u)) = g~ (u),
i.e.,
/-1 (u) = g-1 (g~ (u)).
(1.4)
Let x EW(fiU | Q, F) be a v e c t o r such that wn(x) = ~a[cpn-1]. We then obtain f r o m (1.1), (1.4), and (1.2.3)
t h a t f - l ( u ) = E(x), i.e., the A r t i n - H a s s e exponent established the c o n n e c t i o n b e t w e e n the a c t i o n of the m u l t i plieative o p e r a t i o n on the coefficient r i n g and its a c t i o n on the e o b o r d i s m s of i n f i n i t e - d i m e n s i o n a l p r o j e c tive s p a c e .
C O R O L L A R Y 1.5. L e t w 1, w 2, . . . , E flU- T h e r e e x i s t s m u l t i p l i c a t i v e o p e r a t i o n cp E AU, with q~ [cpn-1] =
w n, if and only if t h e r e exists a c o l l e c t i o n xl, x 2, . . . E flu such that
Wr, ~
dir~ u, [ t . , l y
j Xd
,
X 1 ~
J.
P r o o f . This follows d i r e c t l y f r o m the p r e v i o u s d i s c u s s i o n and f r o m {1.2).
This l a t e s t c o r o l l a r y m a k e s it p o s s i b l e to obtain d i v e r s e i n f o r m a t i o n about the m u l t i p l i c a t i v e o p e r a tions of AU. F o r e x a m p l e :
C O R O L L A R Y 1.6.
F o r any m u i t i p i i c a t i v e o p e r a t i o n ~0 EAU we h a v e :
(1) Td(~p[cPph-l]) -= 1 (mod p),
256
(2) L(~ [cPph-1]) -= 1 (mod p) for odd p,
(3) L(~a [cp2k-1]) _= 0 (rood 2),
(4) X(cp[cpn-1]) =- 0 (mod n).
H e r e , Td is the Todd genus, L is the H i r z e b r u c h L - g e n u s , and X is the Euler c h a r a c t e r i s t i c .
Proof. ALl these a s s e r t i o n s a r e of the same type, so we shall prove only the first. Let x E W(~ U, F)
be a v e c t o r such that Wn(X) = ~ [ c p n - i ] . It exists, by virtue of {1.5). Let Yi = Td xi. Then, by virtue of
~'
d " n/d
(1.2) we have: Tdw~ (x) ~ .~1,~ yd
. In p a r t i c u l a r
T d w h (x)
~'~
.
n-1
= ~=~p~yPpi
. But, Yl = wl(x) = ~(1) = 1,
whence follows the required a s s e r t i o n .
COROLLARY 1.7. Operation ~ap 6 AU @ Zp, c o r r e s p o n d i n g to v e c t o r Vp(1), acts as follows:
q% [CPph-l] = [Cppn-1],
%, [CP'] = 0 when n ~ ph __ 1.
Proof. This follows d i r e c t l y from a s s e r t i o n (6) of T h e o r e m (2.1.9) and f r o m (1.1) (see [6]).
LITERATURE
1.
2.
3.
4.
5.
6.
7.
CITED
E. Witt, "Zyklische KSrper und Algebren der C h a r a k t e r i s t i k P yon Grad pn,,, j . Reine und Angew.
Math., 176., No. 3, 126-140 (1936).
Honda, " F o r m a l groups and zeta functions," in the collection of t r a n s l a t i o n s : Matematika, 133, No. 6,
3-21 (1969).
M. L a z a r d , ' S u r les groupes de L i e f o r m e l s a u n p a r a m e t r e , " Bull. Soc. Math. France, 8.3, 251-274
(1955).
D. Mumford, L e c t u r e s on Curves on an Algebraic Surface, Princeton Univ. P r e s s (1966).
P. C a r t i e r , "Sur les groupes f o r m e l s a b e l i e n n e , " C o m p t e s rendus, 265, No. 1, 49-129 (1967).
S . P . Novikov, "Methods of algebraic topology f r o m the point of view of c o b o r d i s m theory," Izv. Akad.
Nauk SSSR, Ser. Matem., 31, No. 4, 855-951 (1967).
D. Quillen, "On the f o r m a l group laws," Bull. A m e r . Math. Soc., 75, No. 6, 1293-1298 (1969).
257