My Contact info: Paul Chafe 204A Lumbers [email protected] Downloading and Using MEGA: MEGA is a new and easy to use phylogenetic analysis software. It is available for free download; HOWEVER, you will need to provide an email address in order to get a download link. I’ve chosen MEGA because it is both fast and very easy to use. Head to the MEGA website: http://www.megasoftware.net/ This website has information on the program, how to complete various analyses, etc. Click on DOWNLOAD for whichever version you’re going to use (Windows, Linux, Mac). I’ve only used the Windows version, so the information below work for windows, I cannot confirm that it will work on MAC. Fill in the information requested (name and email). MEGA will send you an email with a link to download the program. Click the link within the email and the program will download. Once it has downloaded start the MEGA5 setup program. Click NEXT to install, choose the desired program folder (e.g. MEGA5), then select the startup menu folder name (e.g. MEGA5), next you can choose whether to add a desktop item, finally you can click install. Once the installation is complete you can choose to start the program. The program website has a tutorial, which may help familiarize you with the software: http://www.megasoftware.net/tutorial.php Now, we will complete a sample analysis of the AUSTROBAILEYALES, using Nymphaea caerulea (NYMPHALES) as an outgroup. Note that the NYMPHALES sequence is first among those listed below. Copy the sequences below into a .txt file (either open notepad and save a new file, or open a blank word document and then save the file as text only format). You will also want to change the first 10 characters to something useful, for instance, I called Nymphaea caerulea >Nymphaea in my analysis. Once you’ve done that you can save your file as something informative (like AUSTROByourname). >Nymphaeaceae gi|298379483|gb|GQ468660.1| Nymphaea caerulea isolate NycW1 ribulose-1,5bisphosphate carboxylase/oxygenase large subunit (rbcL) gene, partial cds; chloroplast AAGTGTTGGATTCAAAGCTGGTGTTAAAGATTACAGATTGACTTATTACACTCCTGATTATGAAACCCTT GCTACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAGGAAGCAGGAGCTG CGGTGGCTGCCGAATCTTCCACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCG TTACAAAGGACGATGCTACCACATCGAGCCTGTTGCTGGGGAGGAAAATCAATATATTGCTTATGTAGCT TATCCTTTGGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTG GGTTCAAAGCCCTACGAGCTCTACGTCTGGAGGATCTGAGAATTCCTCCTGCTTATTCTAAAACTTTCCA GGGCCCACCTCATGGAATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGT ACTATTAAACCAAAATTGGGGTTATCCGCAAAGAACTATGGGAGAGCGGTTTATGAGTGTCTCCGTGGTG GACTTGATTTTACCAAGGATGATGAAAACGTGAACTCCCAACCGTTTATGCGTTGGAGAGACCGTTTCTT ATTTTGCGCCGAAGCTATTTATAAAGCGCAGGCCGAAACAGGTGAAATTAAAGGACATTACTTGAATGCT ACTGCAGGTACATCCGAAGAAATGATCAAAAGGGCGGTATGTGCCCGAGAGTTGGGAGTTCCTATCGTAA TGCATGACTACTTAACAGGGGGATTCACCGCAAATACTAGCTTGGCTCATTATTGCCGAGACAATGGCCT ACTTCTTCACATCCACCGCGCAATGCATGCAGTTATTGATAGACAGAGGAATCATGGTATTCACTTCCGT GTACTAGCTAAAGCGTTGCGTATGTCTGGGGGGGATCATATTCACTCTGGTACCGTAGTAGGTAAACTGG AAGGGGAACGAGATGTCACTTTGGGCTTTGTTGATTTACTACGTGATGATTTTATTGAAAAAGACCGGAG TCGCGGTATTTATTTCACTCAAGATTGGGTATCTATGCCAGGTGTTCTGCCCGTGGCTTCAGGGGGTATT CACGTTTGGCATATGCCTGCCCTGACCGAGATATTTGGGGATGATTCCGTGCTACAGTTCGGTGGAGGAA CTTTGGGACACCCTTGGGGGAATGCACCTGGTGCAGTAGCTAATAGGGTAGCTTTAGAAGCGTGTGTACA AGCTCGTAATGAGGGACGTGATCTTGCTCGTGAAGGTAATGAAATTATTCGTGAAGCTAGCAAATGGAGT CCTGAACTGGCTGCTGCTTGTGAGGTATGGAAAGAGATCAAATTTGAATTCGAAGCAATGGATGTCTTGT AA >gi|37194768|gb|L12632.2|AUBCPRBCLA Austrobaileya scandens ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene, partial cds; chloroplast gene for chloroplast product GTGTTGGATTCAAGGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGACTATGAAACTAAAAT GACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCTGAGGAAGCGGGGGCTGCG GTAGCTGCAGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTCGATCGTT ACAAAGGTCGATGCTACCACATCGAGCCTGTTGCTGGGGAGGAAAATCAATATATTGCTTATGTAGCTTA CCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGG TTCAAAGCCCTACGAGCTCTGCGTCTGGAAGATCTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAG GCCCGCCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGGCGTCCCCTATTGGGATGTAC TATTAAACCAAAATTAGGTTTATCTGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGA CTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCGTTTATGCGTTGGAGGGACCGTTTCGTAT TTTGTGCCGAAGAAGTTTATAAAGCGCAGGCAGAAACAGGTGAAATCAAAGGACATTACTTGAATGCTAC CGCAGGTACATGCGAAGAAATGATCAAAAGGGCCGTATTTGCCAGAGAATTGGGAGTTCCTATCGTAACG CATGACTACTTAACAGGGGGATTCACTGCAAATACTAGCTTGGCTCATTATTGCCGAGACAACGGCCTAC TTCTTCACATCCATCGCGCAATGCATGCAGTTATTGATAGACAGAGGAATCATGGTATACACTTTCGTGT ACTAGCTAAAGCGTTGCGTATGTCTGGTGGAGATCATGTTCACTCTGGTACCGTAGTAGGCAAACTGGAA GGGGAACGGGACGTCACTTTGGGTTTTGTTGATTTACTACGTGATGATTTTATTGAAAAAGACCGAAGTC GCGGTATTTATTTTACTCAAGATTGGGTATCTATGCCAGGTGTTTTACCCGTGGCTTCAGGAGGTATTCA CGTTTGGCATATGCCTGCCCTGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACT TTAGGGCACCCTTGGGGAAATGCACCTGATGCAGTAGCCAATCGGGTGGCTTTAGAAGCGTGTGTACAAG CTCGGAATGAGGGACGTGATCTTGCTCGTGAAGGTAATGAGGTTATCCGTGAAGCGAGCAAATGGAGCCC TGAACTAGCTGCTGCTTGTGAGGTATGGAAGGAGATCAAATTCGAATTCGAAGCAATGGATGTCTTGTAA >gi|37194806|gb|L12652.2|ILLCPRBCLA Illicium parviflorum ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene, partial cds; chloroplast gene for chloroplast product GTGTTGGATTCAAGGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGAATATGAAACGAAAGA GACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCTGAGGAAGCGGGAGCTGCG GTAGCTGCGGAATCCTCTACTGGTACCTGGACCACTGTGTGGACTGATGGACTTACCAGCCTCGATCGTT ACAAAGGGCGATGCTACCACATTGAGCCCGTTGCTGGGGAGGAAAATCAATATATTGCTTATGTAGCTTA TCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGG TTCAAAGCCCTACGAGCTCTGCGTCTGGAAGATTTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAG GCCCACCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTAC TATTAAACCAAAATTAGGATTATCTGCCAAGAACTACGGTAGAGCGGTTTATGAATGCCTCCGCGGTGGA CTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGGAGGGACCGTTTCGTAT TTTGTGCCGAAGCAGTTTATAAAGCGCAGGCCGAAACAGGTGAAATTAAAGGACATTACTTGAATGCTAC TGCAGGTACATGCGAAGAAATGATCAAAAGGGCTGTATTTGCCAGAGAATTGGGAGTTCCTATCGTAATG CATGACTACTTAACAGGGGGATTCACTGCAAATACTAGCTTGGCTCATTATTGCCGAGACAACGGCTTAC TTCTTCACATCCATCGCGCAATGCATGCAGTTATTGATAGACAGAGGAATCATGGTATGCACTTTCGTGT ACTAGCTAAAGCGTTGCGTATGTCTGGTGGAGATCATATTCACGCTGGTACTGTAGTAGGTAAACTGGAA GGGGAACGGGATGTCACTTTGGGTTTTGTTGATTTACTACGTGATGATTTTATTGAAAAAGACCGAAGTC GCGGCATTTATTTCACTCAAGATTGGGTATCTATGCCAGGTGTTCTGCCCGTGGCTTCAGGGGGTATTCA CGTTTGGCATATGCCTGCCTTGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACT TTAGGACACCCTTGGGGAAATGCGCCTGGTGCAGTAGCTAATCGAGAGGCTTTAGAGGCGTGTGTACAAG CTCGTAATGAGGGACGTGATCTTGCTCGTGAAGGTAATGAAGTTATCCGTGAAGCTAGCAAATGGAGCCC TGAACTAGCTGCTGCTTGTGAGGTATGGAGGGAGATCAAATTCGAATTCGAAGCAATGGATGTCTTATAA >gi|37194836|gb|L12665.2|SDRCPRBCLA Schisandra sphenanthera ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene, partial cds; chloroplast gene for chloroplast product GTGTTGGATTCAAGGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGAATATGAAACGAAAGA TACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCGCCCGAGGAAGCGGGAGCTGCG GTAGCTGCGGAATCTTCTACTGGTACCTGGACTACTGTGTGGACTGATGGACTTACCAGCCTCGATCGTT ATAAAGGGCGATGCTACCACATTGAGCCCGTTGCTGGGGAGGAAAATCAATATATTGCTTATGTAGCTTA CCCTTTAGACCTTTTTGAAGAAGGCTCTGTTACTAACATGTTTACTTCTATTGTGGGTAATGTATTTGGG TTCAAAGCCCTACGAGCTCTGCGTCTGGAAGATTTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAG GCCCACCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTAC TATTAAACCAAAATTAGGGTTATCTGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGA CTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCGTTTATGCGTTGGAGGGACCGTTTCTTAT TTTGTGCCGAAGCTCTTTATAAAGCGCAGGCCGAAACAGGTGAAATTAAAGGACATTACTTGAATGCTAC TGCAGGTACATGCGAAGAAATGATGAAAAGGGCTGTATTTGCCAGAGAATTGGGAGTTCCTATCGTAATG CATGACTACTTAACAGGGGGATTCACTGCAAATACTAGCTTGGCTCATTATTGCCGAGACAACGGCCTAC TTCTTCACATCCATCGCGCAATGCATGCAGTTATTGATAGACAGAGGAATCATGGTATCCACTTTCGTGT ACTAGCTAAAGCGTTGCGTATGTCTGGTGGAGATCATATTCACTCTGGTACCGTAGTAGGTAAACTGGAA GGGGAACGGGACGTCACTTTGGGTTTTGTTGATTTACTACGTGATGATTTTATTGAAAAAGACCGAAGTC GCGGCATTTATTTCACTCAAGATTGGGTATCTATGCCAGGTGTTCTGCCCGTGGCTTCAGGGGGTATTCA CGTTTGGCATATGCCTGCCCTGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACT TTAGGACACCCTTGGGGAAATGCGCCTGGTGCAGTAGCTAATCGTGTGGCTTTAGAGGCGTGTGTACAAG CTCGTAATGAGGGGCGTGATCTTGCTCGTGAAGGTAATGAAGTTATCCGTGAAGCTAGCAAATGGAGCCC TGAACTAGCTGCTGCTTGTGAGGTCTGGAAGGAGATCAAATTCGAATTCGAAGCAATGGATGTCTTGTAA >gi|37544966|gb|AY116658.1| Trimenia moorei 1,5-bisphosphate carboxylase large subunit (rbcL) gene, partial cds; chloroplast gene for chloroplast product TGGATTCAAGGCTGGTGTAAAAGATTACCGTTTGACTTATTATACTCCTGAATATGATACGAAAGAGACT GATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCGGAGGAAGCAGGGGCTGCGGTAG CTGCGGAATCTTCTACTGGTACATGGACCACTGTGTGGACGGATGGGCTTACCAGCCTCGATCGTTACAA AGGGCGATGCTACCACATTGAACCAGTTCCTGGGGAGGATAATCAATTTATTGCTTATGTAGCTTATCCT TTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTTGGGAATGTATTTGGGTTTA AAGCCCTACGAGCTCTGCGTCTGGAAGATCTGCGAATTCCTACTGCTTATATCAAAACTTTCCAAGGTCC GCCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATT AAACCAAAATTAGGGTTATCCGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCTCCGTGGTGGACTTG ATTTTACTAAGGATGATGAGAATGTGAACTCCCAACCATTTATGCGCTGGAGGGACCGTTTCTTATTTTG TGCCGAGGCCCTTTATAAAGCGCAGGCCGAAACCGGTGAAATCAAAGGACATTACTTGAATGCTACTGCA GGTACATGCGAAGAAATGATCAAAAGGGCTGTATTTGCCAGAGAATTGGGAGTTCCTATCGTAATGCATG ACTACTTAACAGGGGGATTCACTGCAAATACTAGCTTGGCTCATTATTGCCGAGACAACGGCCTACTTCT TCACATCCATCGCGCAATGCATGCAGTTATTGATAGACAGAAGAATCATGGTATGCACTTTCGTGTACTA GCTAAAGCCTTGCGTATGTCTGGTGGAGATCATATTCACTCTGGTACCGTAGTGGGGAAACTGGAAGGGG AACGGGATATCACTTTGGGTTTTGTTGATTTATTACGCGATGATTTTATTGAAAAAGACCGAAGTCGCGG CATTTATTTTACTCAAGATTGGGTATCTCTGCCAGGTGTTCTGCCCGTGGCTTCCGGGGGTATTCACGTT TGGCATATGCCTGCCCTGACTGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGCGGAGGAACTTTAG GGCACCCTTGGGGAAATGCACCAGGTGCAGTAGCTAATCGGGTGGCTTTAGAGGCGTGTGTACGAGCTCG TAATGAGGGACGTGATCTTGCTCGCGAAGGGAATGAAATTATCCGCGAAGCTTCCAAATGGAGTAAGGAA CTATATGCTGCT Once you’ve got the file saved you can open CLUSTALX (or access it online: http://www.ebi.ac.uk/Tools/msa/clustalw2/ ) and import the text file you’ve created. To do this click File, Load Sequences, and search for your text file. You can now align the sequences. To do this you click on Alignment, then do complete alignment. Depending on the number of sequences it may take a few seconds to complete the sequence alignment. When the alignment is complete, you’ll need to save it in a format that MEGA can work with. So in clustalx click on file, then ‘save sequences as’, and select the format ‘Nexus’. Make sure you name the file something informative!!! You can now close Clustalx and open MEGA. In MEGA you need to load, convert, and analyze your sequence alignment. The first step is to convert your sequence alignment file. To do this you click on File, then ‘Convert File Format to MEGA’. A pop up window will now appear and you can select your sequence alignment. First you will need to select the format (It is important to choose ‘Nexus’ (Paup, Macclade), rather than .aln (clustal) since MEGA has a difficult time dealing with files in clustal format.), then you can seek out your nexus file (it will be called, for instance, AUSTROB.nxs; the .nxs file extension denoting a nexus file). Click on OPEN (you may need to change the file format option back to nexus at this point), then click OK. You now have the option to save your alignment file as a MEGA file (.meg). Again, give this file an informative name. MEGA will now expect you to review the conversion of your file to MEGA format, and you can just close the editor. Now, back in the main MEGA program, you can open the file that you’ve just converted. To do this go to File, then click on Open a file/session, and select your converted MEGA file (e.g. Austrob.meg). A screen asking for the type of data will now appear, select Nucleotide data. Next you will asked whether your data is protein coding, it is so you can click ‘Yes’ (this just means that you’ll have options for base substitution models later on). A good idea is to now recheck that your alignment has converted properly. If it has, it will look like the sequence data below (you can click the button that say TA with dots below to show/hide sites that are identical): Now that we know that the data has imported properly, we can move on to performing some phylogenetic analyses! Start by clicking on the ‘Phylogeny’ tab. In this tab there are several options for phylogenetic analysis. First we’re going to construct a maximum parsimony tree. To do this we click on ‘Construct/test maximum parsimony tree(s)’, which brings up a pop up window in which we can enter the criteria for the test. Set the following data n the menu (it should look like the one below): Test of Phylogeny: None Subsitiutions model: Nucleotide Gaps/Missing Data Treatment: Complete Deletion MP Search Method: Max-mini Branch and Bound Now click ‘compute’. Since this analysis has a relatively small number of taxa the search is fairly fast. However, if you’re analyzing more than about 15 taxa a branch and bound search may take far too long to complete. If this is the case you can change the MP Search Method to something else (use Close-neighborinterchange). Now click ‘Compute’. The program will come up with a tree that will appear in a new window. If your outgroup appears inside the analysis, you can tell MEGA to root the tree on the branch containing the outgroup. To do this you can click on the branch leading to the outgroup, then click on the ‘Place root on branch’ button. Now that the tree is ready you can save it for use in your report. My example MP tree is below: Illicium Schisandra Austrobaileya Trimenia Nymphaea Now that we have a MP tree we can now test the tree by bootstrapping. To do this we again click on phylogeny, then on construct/test maximum parsimony tree. Keeping the settings as before, we now select ‘Test of Phylogeny’ and change the test method to ‘Bootstrap’. Now change the number of bootstrap replications to 1000 (if this takes more than 5 minutes to compute, you can lower the number of bootstrap replications to 500). Now, click ‘compute’ and wait for the program to give you a new tree file. Note there will be both an original tree and a bootstrap consensus tree. In the tree-viewer make sure you view the bootstrap consensus tree and copy it into your write-up. My example bootstrap tree is below: 67 41 Illicium Schisandra Austrobaileya Trimenia Nymphaea Next, we are going to construct a maximum likelihood tree. Here you will run a test to determine which model is most appropriate for your data. To run a model test, first click on ‘Analysis’, then ‘Find Best DNA/Protein Models (ML)’. Then you will get an options screen, slick ‘Compute’. The program will then analyze the different models available for maximum likelihood analyses. When the analysis is finished you will get a table with print outs of the different substitution models, organized by their BIC (Bayesian Information Criterion). The model with the lowest BIC is considered the best descriptor of the observed substitution pattern. The abbreviations listed in the table are described below the table (e.g. T92 is the ‘Tamura-Nei’ model.) . Now make sure that you copy the top 5 listed in your print out and include this information Once your ‘best’ model has been determined you should write down the parameters, then proceed with the analysis. For my analysis of the AUSTROBAILEYALES the ‘best-model’ was TN92+G. The information for this model is described below the output table that was printed out after the model-test. Now, with this information I proceed to run a maximum likelihood analysis using this model. I now go to ‘Analysis’, ‘Phylogeny’, then we select ‘Construct/test Maximum likelihood tree’. We can then enter the information we obtained above (Note, your information will vary depending on the results of the model test described above. However, keep the No. of discrete categories; Gaps/Missing data treatment; ML Hueristic method; and Initial tree for ML as described below): Test of phylogeny: none Substitutions model: nucleotide Model/Method: Tamura-Nei Rates among sites: Gamma Distributed (G) No of discrete gamma categories: 5 Gaps/Missing data treatment: Complete deletion ML Hueristic method: Close-neighbor-interchange Initial tree for ML: Make initial tree automatically Now, click compute. My example tree is below: Illicium Schisandra Trimenia Austrobaileya Nymphaea Keeping the other options the same, now perform a bootstrap test of your Maximum likelihood phylogeny. To do this, in the Maximum likelihood test, change the ‘test of phylogeny’ to bootstrap and the ‘No of replications’ to 1000 (maximum likelihood takes longer to compute than parsimony. If the length of the analysis is longer than about 1 hour you can reduce the number of replications to 500). Once the computation is complete you should view your consensus tree and copy it into your write up. My example is below: Illicium 52 61 Schisandra Trimenia Austrobaileya Nymphaea This is the phylogenetic tree I copied from the Angiosperm phylogeny website (http://www.mobot.org/mobot/research/apweb/). REMEMBER to give your figures appropriate titles, indicating the family, the method used to construct the phylogeny, and any tests that were performed on the data (i.e. Bootstrapping).
© Copyright 2026 Paperzz