A Survey of HNCO and CH3NCO in Molecular Clouds DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry and Biochemistry Department of Astronomy Steward Observatory University of Arizona Arizona Radio Observatory June 22, 2016 Detection of HNCO and CH3NCO in Comet 67P • In Nov. 2014 Philae landed on comet 67P • COSAC mass spectrometer detected a number of organic species in the gas (Goesmann et al. Science 2015) • Included HNCO and CH3NCO • Also suggested that isocyanates could play a role in peptide formation in comets Comet 67P Philae CH3NCO 0.09 0.06 Detection of CH3NCO in Sgr B2(N) 0.03 Sgr B2(N) 80,8 70,7 A 69353.9 MHz NS C3S U U 0.00 90,9 80,8 A 78017.9 MHz 0.09 CH3CH2OH + 0.06 13 CH3OH HCOOCH3 + (CH2OH)2 CH3CH2OH CH3CH2OH 0.03 0.00 • Identified the spectrum of CH3NCO in Sgr B2(N) (Halfen et al. 2015) 0.09 100,10 90,9 A,E SO2 HCO 86680.2 MHz 0.06 86686.6 MHz (CH2OH)2 HCO C3S 0.03 0.00 0.09 0.06 110,11 100,10 A 95341.1 MHz • Detected 17 uncontaminated lines 13 13 U CH2CH CN CH3OH SO2 0.03 120,12 110,11 A 103999.9 MHz CH3CH2OH 0.09 CH2CH CN CH3CH2OH 0.00 0.06 90,9 80,8 E 78087.7 MHz U U 0.03 CH3CH2OH 0.09 CH3CH2OH + HCOOCH3 U CH3CH2OH + 13 CH3OH CH3CH2OH U 0.00 0.09 81,8 71,7 A 0.06 70009.2 MHz 0.03 U U 0.00 0.09 0.06 0.03 91,8 81,7 A 77347.4 MHz CH3CH2CN 2015) – Combined fit to Koput and new data, and identified in Sgr B2(N) survey spectrum at 3 mm U 0.00 0.06 • Based on previous laboratory work by Koput (1986) and new FTmmW data from 60 – 88 GHz (Halfen et al. CH2NH +U CHOCH2OH U CH3CH2CN TR* (K) 0.03 CH2CHCN U CH3CH2OH CH3CONH2 0.00 (Halfen, Ilyushin, & Ziurys ApJL 2015) -96 -16 64 VLSR (km/s) 144 224 Survey of HNCO and CH3NCO in Molecular Clouds • Seek to determine if HNCO and CH3NCO are linked chemically • Performed a survey of each species in several giant molecular clouds • G34.3, W51M, Orion-KL, Sgr B2(2N), G10.47, and G31.41 • Is Sgr B2(N) unique? • How widespread is CH3NCO? HNCO and CH3NCO Observations • Used the ARO ALMA Prototype Antenna (APA) 12 m at 3 mm and Submillimeter Telescope (SMT) 10 m at 1 mm APA 12 m SMT 10m KP 12 m Arizona Radio Observatory • Searched for 4 rotational transitions of HNCO in Ka = 0 and 2, and 4 lines of CH3NCO in Ka = 0 A and E • Observed each species in six giant molecular clouds • Each transition observed for 2 – 20 hours Species HNCO CH3NCO Transition J′Ka,Kc J″Ka,Kc 42,3 32,2 42,2 32,1 40,4 30,3 52,4 42,3 52,3 42,2 50,5 40,4 102,9 92,8 100,8 92,7 100,10 90,9 122,11 112,10 122,10 102,9 120,12 100,10 100,10 90,9 100,10 90,9 110,11 100,10 120,12 110,11 Sym m A E A A 0 1 0 0 Frequency (MHz) 87898.425 87898.628 87925.237 109872.337 109872.765 109905.749 219733.850 219737.193 219798.274 263672.912 263678.709 263748.625 86680.190 86686.556 95340.443 103998.481 HNCO 0.45 G34.3 JK ,K = 40,4 a c CH3NCO 30,3 0.012 JK ,K = 100,10 0.008 E a 0.30 0.15 0.004 0.00 0.45 JK ,K = 50,5 a 0.30 c 0.00 0.45 JK ,K = 100,10 a 0.30 c TA* (K) TA* (K) JK ,K = 110,11 0.012 0.15 90,9 90,9 HCO A HCO C3S 0.000 40,4 c G34.3 a c 100,10 A CH2CHCN 0.008 0.004 0.000 0.15 HCOOCH3 JK ,K = 120,12 0.012 0.00 0.45 JK ,K = 120,12 HCCCN a 0.30 c 110,11 a c 110,11 A CH3CH2OH 0.008 0.004 0.15 0.000 0.00 8 33 58 83 108 8 33 -1 VLSR (km s ) • HNCO and CH3NCO detected in each source 58 83 -1 VLSR (km s ) 108 HNCO W51M JK ,K = 40,4 0.6 a c CH3NCO 0.045 30,3 JK ,K = 100,10 a c E 0.030 0.4 W51M 90,9 HCO A 0.2 0.015 0.0 JK ,K = 50,5 0.6 a c 40,4 0.000 0.4 JK ,K = 110,11 0.016 0.2 TA* (K) TA* (K) HCO C3S 0.0 JK ,K = 100,10 0.6 a c 90,9 0.4 a c 100,10 A CH2CHCN 0.008 0.000 HCOOCH3 0.2 0.016 CH3CH2OH 0.0 JK ,K = 120,12 HCCCN 0.6 a c 110,11 JK ,K = 120,12 a c 110,11 A 0.008 0.4 0.000 0.2 0.0 8 33 58 83 108 8 33 -1 VLSR (km s ) • HNCO and CH3NCO detected in each source 58 83 -1 VLSR (km s ) 108 HNCO 9.0 Sgr B2(2N) JK ,K = 40,4 a c CH3NCO 30,3 JK ,K = 100,10 0.060 a 6.0 0.030 0.0 9.0 0.015 JK ,K = 50,5 a 6.0 c 40,4 HCO C3S a TA* (K) TA* (K) c 90,9 1.0 c 100,10 A CH2CHCN 0.045 0.030 U 0.015 0.000 0.5 0.0 0.6 E JK ,K = 110,11 0.060 a HCO 0.000 3.0 JK ,K = 100,10 90,9 A 0.045 3.0 0.0 1.5 c Sgr B2(2N) JK ,K = 120,12 0.060 a JK ,K = 120,12 a 0.4 c c 110,11 A CH2CH13CN 0.045 110,11 0.030 0.2 0.015 0.0 0.000 18 43 68 93 118 18 43 -1 VLSR (km s ) • HNCO and CH3NCO detected in each source 68 93 -1 VLSR (km s ) 118 HNCO JK ,K = 40,4 a c CH3NCO 30,3 JK ,K = 100,10 0.02 a 0.01 JK ,K = 50,5 a 0.6 c 40,4 1.5 90,9 JK ,K = 120,12 HCCCN a 3.0 c 110,11 100,10 A 0.02 U 0.01 0.00 0.03 HCOOCH3 0.0 4.5 c SO2 0.02 0.01 JK ,K = 120,12 CH3CH2OH 3.0 c TA* (K) TA* (K) a a A HCO C3S JK ,K = 110,11 JK ,K = 100,10 HCO 0.00 0.03 0.3 0.0 4.5 90,9 c E 0.2 0.0 0.9 Orion-KL CH2CHCN 0.4 Orion-KL a c 110,11 A 1.5 0.00 0.0 -41 -16 9 34 59 -41 -16 -1 VLSR (km s ) • HNCO and CH3NCO detected in each source 9 34 -1 VLSR (km s ) 59 HNCO 0.6 G10.47 0.03 JK ,K = 40,4 a c 30,3 JK ,K = 100,10 0.4 0.02 0.2 0.01 0.0 0.6 JK ,K = 50,5 c a c c TA* (K) a 0.4 90,9 HCO A 0.03 JK ,K = 110,11 JK ,K = 100,10 G10.47 0.00 40,4 0.2 TA* (K) a E 0.4 0.0 0.6 CH3NCO 90,9 a 0.02 c 100,10 A CH2CHCN 0.01 0.00 0.2 0.03 0.0 0.6 0.02 JK ,K = 120,12 JK ,K = 120,12 a 0.4 c 110,11 a c 110,11 A CH3CH2OH 0.01 0.2 0.00 0.0 18 43 68 93 118 18 43 -1 VLSR (km s ) • HNCO and CH3NCO detected in each source 68 93 -1 VLSR (km s ) 118 HNCO 0.30 G31.41 JK ,K = 40,4 a c 0.024 30,3 0.016 CH3NCO G31.41 JK ,K = 100,10 a c E 90,9 JK ,K = 110,11 100,10 A JK ,K = 120,12 110,11 A HCO A 0.15 0.008 0.00 0.30 JK ,K = 50,5 a c 0.000 40,4 0.024 TA* (K) 0.15 a 0.016 c CH2CHCN 0.00 0.30 JK ,K = 100,10 a c 0.008 90,9 0.000 0.15 0.024 0.00 a JK ,K = 120,12 0.30 a c 110,11 0.016 c CH3CH2OH 0.008 0.15 0.000 0.00 48 73 98 123 148 48 73 -1 VLSR (km s ) • HNCO and CH3NCO detected in each source 98 123 -1 VLSR (km s ) 148 13.0 Rotational Temperature Diagram for HNCO G34.3 log (3kW/8p3nSm2) 12.0 Trot = 33 1 K Ntot = 5.8 0.2 x 1013 cm-2 11.0 Trot = 118 15 K Ntot = 6.9 1.5 x 1013 cm-2 10.0 9.0 0 50 100 150 200 250 Eu (K) • HNCO has two temperature components in G34.3, W51M, G31.41, G10.47 – only in cold gas in Sgr B2(2N) 14 Rotational Temperature Diagram for HNCO VLSR = 62 km s-1 Trot = 13.5 0.2 K Ntot = 1.3 0.1 x 1015 cm-2 log (3kW/8p3nSm2) 13 SgrB2(2N) B2(2N) Sgr 12 VLSR = 73 km s-1 Trot = 15.3 0.3 K Ntot = 8.6 0.6 x 1014 cm-2 11 10 0 50 100 150 200 250 Eu (K) • HNCO has two temperature components in G34.3, W51M, G31.41, G10.47 – only in cold gas in Sgr B2(2N) 13.5 Rotational Temperature Diagram for HNCO log (3kW/8p3nSm2) 12.5 Trot = 205 24 K Ntot = 6.3 0.6 x 1014 cm-2 Orion-KL 11.5 10.5 9.5 0 50 100 150 200 250 Eu (K) • HNCO mostly in hot core in Orion-KL, with some emission in plateau and ridge – needs more analysis 11.0 Rotational Temperature Diagram for CH3NCO log (3kW/8p3nWstSm2) 10.5 G31.41 Trot = 28 10 K Ntot = 4.9 1.7 x 1012 cm-2 10.0 9.5 9.0 8.5 8.0 0 5 10 15 20 25 30 35 Eu (K) • CH3NCO found in cold gas in each source • Sgr B2(2N) has two velocity components 40 45 50 11.5 Rotational Temperature Diagram for CH3NCO 11.0 log (3kW/8p3nWstSm2) Sgr B2(2N) 10.5 VLSR = 73 km s-1 Trot = 12 4 K Ntot = 2.0 1.6 x 1013 cm-2 10.0 VLSR = 62 km s-1 Trot = 8.7 1.6 K Ntot = 2.8 1.7 x 1013 cm-2 9.5 9.0 0 5 10 15 20 25 30 35 40 Eu (K) • CH3NCO only found in cold gas in each source • Sgr B2(2N) has two velocity components 45 50 Column Densities of HNCO and CH3NCO HNCO Source Sgr B2(N) (62 km/s) Sgr B2(N) (73 km/s) W51M G34.3 Orion-KL Sgr B2(2N) (62 km/s) Sgr B2(2N) (73 km/s) G31.41 G10.47 CH3NCO Ntot (cm-2) Trot (K) Ntot (cm-2) Trot (K) Ntot (cm-2) Trot (K) 5.2 x 1014 22 9.3 x 1014 136 2.3 x 1013 24 8.1 x 1014 15 1.1 x 1014 118 1.5 x 1013 28 1.6 x 1014 5.8 x 1013 -- 52 33 -- 2.7 x 1014 6.9 x 1013 6.3 x 1014 138 118 205 7.7 x 1012 2.8 x 1012 4.7 x 1012 10 26 27 1.3 x 1015 14 -- -- 2.8x 1013 9 8.6 x 1014 15 -- -- 2.0 x 1013 12 4.5 x 1013 1.2 x 1014 36 43 9.5 x 1013 2.8 x 1014 104 145 4.9 x 1012 4.0 x 1012 28 25 14.0 Comparison between Column Densities of HNCO and CH3NCO Log(Ntot) for CH3NCO 13.5 y = 0.6295x + 3.9106 R² = 0.8721 13.0 12.5 12.0 13.0 13.5 14.0 14.5 Log(Ntot) for HNCO 15.0 15.5 • Abundances of HNCO and CH3NCO quite correlated • Ratio of HNCO in cold component of each source to CH3NCO between 9 – 54 • Suggests that HNCO and CH3NCO are linked chemically • HNCO could be parent species of CH3NCO in neutral-neutral reaction CH3∙ + HNCO → CH3NCO + H∙ • More work needs to be done to confirm this Ratio of HNCO/CH3NCO Source Sgr B2(N) (62 km/s) Sgr B2(N) (73 km/s) W51M G34.3 Orion-KL Sgr B2(2N) (62 km/s) Sgr B2(2N) (73 km/s) G31.41 G10.47 Ratio 23 54 21 21 -46 43 9.2 30 Conclusions • CH3NCO widespread in molecular clouds across the Galaxy • CH3NCO found in cold gas in each source, HNCO in cold and warm gas • Similar ratio between HNCO and CH3NCO in each source • HNCO likely parent species of CH3NCO • CH3NCO highly reactive and could lead to peptides on comet surfaces Acknowledgements • • • • • • Prof. Lucy Ziurys Julie Anderson Debbie Schmidt John Keogh Kyle Kilchenstein Mark Burton • NASA NExSS program
© Copyright 2026 Paperzz