MAT 4725 Numerical Analysis Section 8.2 Orthogonal Polynomials and Least Squares Approximations (Part II) http://myhome.spu.edu/lauw Preview Inner Product Spaces Gram-Schmidt Process Recall: Least Squares Approximation of Functions Given f C[a, b], approximate f ( x) by n Pn ( x) ak x k f ( x) k 0 Pn ( x) Find ak such that b E f ( x ) Pn ( x ) dx 2 a b a is minimized A Different Technique for Least Squares Approximation Computationally Efficient Once 𝑃𝑛(𝑥) is known, it is easy to determine 𝑃𝑛+1 (𝑥) Recall (Linear Algebra) General Inner Product Spaces Inner Product Example 0 Let 𝑓, 𝑔𝐶[𝑎, 𝑏]. Show that b f , g f x g x dx a is an inner product on 𝐶[𝑎, 𝑏] Norm, Distance,… Orthonormal Bases A basis 𝑆 for an inner product space 𝑉 is orthonormal if 1. For 𝑢, 𝑣 𝑆, < 𝑢, 𝑣 >= 0. 2. For 𝑢 𝑆, 𝑢 is a unit vector. Gram-Schmidt Process v1 , v2 , , vn Basis w1 , w2 , , wn Orthogonal Basis u1 , u2 , , un Orthonormal Basis Gram-Schmidt Process Gram-Schmidt Process The component in 𝑣2 that is “parallel” to 𝑤1 is removed to get 𝑤2. So 𝑤1 is “perpendicular” to 𝑤2. Simple Example v2 i j v1 2i Specific Inner Product Space Definition 8.1 0 , 1 , , n is said to be linearly independent on [a, b] if , n whenever c ( x) 0, x [a, b], j 0 j j we have ck 0 j 0,1,..., n. (Otherwse, linearly dependent.) Theorem 8.2 If j ( x) is a polynomial of degree j , then 0 , 1 , , n is linearly independent on any interval [a, b]. Demo Theorem 8.2 If j ( x) is a polynomial of degree j , then 0 , 1 , , n is linearly independent on any interval [a, b]. 0 ( x) 2 1 ( x) x 3 2 2 ( x) x 2 x 7 Definition n the set of polynomials of degree n Theorem 8.3 If 0 ( x), 1 ( x), , n ( x) is linearly independent in n Then Q n , unique c j such that n Q ( x) c j j ( x) j 0 Example 1 0 ( x) 2 1 ( x) x 3 2 ( x ) x 2x 7 2 Express Q( x) a0 a1 x a2 x 2 as a linear combination of 0 ( x), 1 ( x), and 2 ( x). Definition (Skip it for the rest) Weight function w( x) on an interval I : (a ) integrable (b) w( x) 0 x (c) w( x) 0 on any subinterval of I Weight Functions to assign varying degree of importance to certain portion of the interval 1 Modification of the Least Squares Approximation Recall from part I Least Squares Approximation of Functions Given f C[a, b], f ( x) approximate f ( x) by n Pn ( x) Pn ( x) ak x k 0 a b k Least Squares Approximation of Functions Find ak such that b E f ( x ) Pn ( x ) dx f ( x) 2 a Pn ( x) a is minimized b Normal Equations b k j b j a x dx f ( x ) x dx, j 0,1, k k 0 a a n Solve for ak ,n Modification of the Least Squares Approximation Given f C[a, b], Given f C[a, b], approximate f ( x) by approximate f ( x) by n Pn ( x) ak x k 0 k n P( x) akk x k 0 Modification of the Least Squares Approximation Find ak such that Find ak such that b E f ( x ) Pn ( x ) dx 2 a is minimized b E f ( x) P ( x) dx 2 a is minimized Modification of the Least Squares Approximation For j 0,1, , n, solve for ak b k j b j a x dx f ( x ) x dx k k 0 a a n b b ak k ( x) j ( x)dx f ( x) j ( x)dx k 0 a a n Where are the Improvements? b b ak k ( x) j ( x)dx f ( x) j ( x)dx k 0 a a n Where are the Improvements? b b ak k ( x) j ( x)dx f ( x) j ( x)dx k 0 a a n Find k such that 0 a k ( x) j ( x)dx j 0 Then...... b jk jk Definition 8.5 0 , 1 , , n is said to be an orthogonal set of functions on [ a, b] with respect to w if jk 0 a k ( x) j ( x)dx j 0 j k (Orthonormal if all j =1) b Theorem 8.6 b ak f ( x)k ( x)dx a b k ( x) 2 dx 𝑎𝑘 are easier to solve 𝑎𝑘 are “reusable” a 1 k b a f ( x)k ( x)dx n P( x) akk ( x) k 0 Where to find Orthogonal Poly.? the Gram-Schmidt Process Gram-Schmidt Process w( x) 1 0 ( x) 1 b x 0 ( x) dx 2 1 ( x) x B1 where B1 a b 0 ( x) dx 2 a For k 2, k ( x) x Bk k 1 ( x) Ckk 2 ( x) b x k 1 where Bk ( x) dx a b k 1 ( x) dx 2 a b 2 x k 1 and Ck ( x)k 2 ( x)dx a b k 2 ( x) dx 2 a Special Case: on [-1,1], Legendre Polynomials P0 ( x) 1 [-1,1] 1 x P0 ( x) dx 2 P1 ( x) x B1 x where B1 1 1 P0 ( x) dx 0 2 1 1 P2 ( x) x B2 P1 ( x) C2 P0 ( x) x 3 2 1 x P ( x) 2 1 where B2 1 1 1 dx P1 ( x) dx 2 1 xP ( x) P ( x)dx 1 0 and C2 0 1 1 P0 ( x) dx 2 1 1 3 Legendre Polynomials w( x) 1, [-1,1] P0 ( x) 1 P1 ( x) x 1 P2 ( x) x 3 2 3 P3 ( x) x x 5 3 Example 2 Find the least squares approx. of 𝑓(𝑥) = sin(𝜋𝑥) on [−1,1] by the Legendre Polynomials. Example 2 1 1 f ( x) P ( x)dx sin x 1dx b 0 a0 1 1 P0 ( x) 2 1 dx 1 1 1 2 1 dx f ( x) ( x)dx k 0 ak a b k ( x) 2 a dx Example 2 a0 0 b 1 a1 f ( x) P1 ( x)dx 1 1 P ( x) 2 1 1 dx f ( x) ( x)dx k 1 sin( x) xdx 1 1 x 2 1 dx ak a b k ( x) 2 3 a dx Example 2 a0 0, a1 3 b k ak 2 1 1 sin( x) x 3 dx 2 2 1 1 x 3 dx 1 a b k ( x) 2 1 a2 f ( x) ( x)dx a 0 dx Example 2 a0 0, a1 3 b , a2 0 3 3 1 sin( x) x 5 x dx k ak 2 3 3 1 x 5 x dx 1 a b k ( x) 2 1 a3 f ( x) ( x)dx 35 15 2 2 3 a dx Example 2 a0 0, a1 3 , a2 0, a3 35 15 2 2 3 P( x) a0 P0 ( x) a1P1 ( x) a2 P2 ( x) a3 P3 ( x) Example 2 𝑓 𝑥 = sin(𝜋𝑥) 𝑃(𝑥) Homework Download Homework
© Copyright 2026 Paperzz