Improving the Earthquake Resilience of Buildings: The worst case approach Izuru Takewaki Professor, Kyoto University Abbas Moustafa Associate Professor, Minia University, Egypt Kohei Fujita Assistant Professor, Kyoto University Abstract Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings. This book consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics including: • A consideration of damage of building structures in the critical excitation method for improved building-earthquake resilience, • A consideration of uncertainties of structural parameters in structural control and base isolation for improved building-earthquake resilience, and • New insights in structural design of super high-rise buildings under longperiod ground motions. This book is a valuable resource for researchers and engineers interested in learning and applying the worst-case scenario approach in the seismicresistant design for more resilient structures. Highlights ▶ Considers the elastic-plastic behavior of building structures in the critical excitation method for improved building-earthquake resilience ▶ Approaches the uncertainties of structural parameters in structural control and base-isolation for improved building-earthquake resilience ▶ Provides new insights in structural design of super high-rise buildings under long-period ground motions (case study on tall buildings in mega cities in Japan during the 2011 off the Pacific coast of Tohoku earthquake on March 11) ▶ Instructs readers on how to implement the worstscenario approach to provide engineers with effective design techniques Chapter 1 1.1 Background and review 1.2 Input ground motion and worst-case scenario 1.3 Organization of the book Chapter 2 What is an important measure for characterizing earthquake ground motion? acceleration or velocity? Fig.2.9 Schematic diagram for computing credible bounds for acceleration and velocity constraints Chapter 2 Resonance can occur? Resonance in reality Fig.2.15(a) Ground acceleration, ground velocity and topstory displacement of a super high-rise building in Osaka during the 2011 off the Pacific coast of Tohoku earthquake Chapter 2 Approach to improving building earthquake resilience Improving building resilience by structural control Fig.2.26 Plastic-hinge formation in 40-story buildings of T1=3.6(s) without and with high-hardness rubber dampers without dampers with dampers Chapter 3 H-E06230 Velocity amplitude spectra (m) Simulation of Near-Field Pulse-Like Ground Motion 0.5 0 -0.5 5 (a) 10 Time (s) 15 20 Velocity (m/s) 1 (b) 0.5 0 -0.5 -1 0 5 10 Time (s) 15 20 1.5 Velocity (m/s) 1 0.5 0 -0.5 (c) -1 0 5 10 Time (s) 15 20 Velocity amplitude spectra (m) -1 0 Velocity amplitude spectra (m) Velocity (m/s) 1 SCS052 C02065 TAK000 TCU068W TCU068N LGP000 LCN275 TAB-TR KJM000 RRS228 YPT060 ALS-E TCU078W WSM090 JOS090 0.1 0.08 0.06 C02065 0.04 0.02 0 0 ERZ-NS DZC180 PCD164 (a) 1 2 3 Frequency (Hz) 4 5 H-E06230 0.1 C02065 TAB-TR RRS228 0.08 0.06 0.04 0.02 0 0 1 2 3 Frequency (Hz) 4 SCS052 TAK000 TCU068N TCU068W 5 KJM000 YPT060 0.1 0.08 ALS-E TCU078W 0.06 0.04 0.02 0 0 1 2 3 Frequency (Hz) 4 5 LGP000 Fig. 3.4 Ground velocity and associated Fourier amplitude spectra CPM000 LCN275 ERZ-NS WSM090 DZC180 JOS090 PCD164 (b) Fig. 3.1 Near-field strong ground motion with distinct velocity pulses: (a) velocity time history, (b) velocity Fourier amplitude spectra Critical excitation for inelastic response Chapter 4 2 Normalized displacement Normalized displacement A cceleration Acceleration / g/ g 0.5 0 -0.5 0 5 10 15 Time s 20 25 1 0 -1 -2 0 30 5 10 15 Time s 20 25 30 4 x 10 3500 3000 1 Energy Energy NNm m Hysteretic N Hysteretic force force N 1.5 0.5 0 -0.5 -1 -1.5 -0.2 Input energy Hysteretic energy Damping energy 2500 2000 1500 1000 500 -0.1 0 0.1 Displacement m 0.2 0 0 5 10 15 Time s 20 25 30 Fig. 4.8: Critical earthquake accelerations and associated critical responses for case 4 (b) Chapter 5 1 0.2 0.5 0.1 0 0 -0.5 -1 0 Acceleration / g Characteristics of Earthquake Ground Motion of Repeated Sequences Acceleration / g (a) 200 400 NS 600 -0.2 0 1 0.2 0.5 0.1 0 0 -0.5 200 400 600 -0.2 0 1 0.1 0.5 0.05 0 0 -0.5 -1 0 400 Time (s) 200 300 EW 100 200 300 -0.05 UD 200 100 -0.1 EW -1 0 Acceleration / g -0.1 NS UD 600 -0.1 0 100 200 300 Time (s) Fig 5.1: Ground accelerations with multiple sequences (a) 2004 Niigata earthquake at Nagaoka-shisho (NIG028) (b) 2004 Niigata earthquake at Koide (NIG020). Critical excitation for multiple sequences Chapter 6 1 Fourier spectra m/s Acceleration / g 0.5 0 -0.5 0 50 0.8 0.6 0.4 0.2 0 0 100 5 x 10 10 15 4 10 x 10 25 4 Yield energy Damping energy 2 8 1 Energy (Nm) Hysteretic force (N) 20 Frequency (Hz) Time (s) 0 -1 6 4 2 -2 -5 0 Normalized displacement 5 0 0 20 40 60 80 100 Time (s) Fig. 6.5: Critical ground acceleration of two sequences and associated response for bilinear inelastic structure Chapter 7 Mean of input energy (Nm) 15000 10000 5000 0 0 20 40 60 80 100 Variance of input energy (Nm) Response of Nonlinear SDOF Structures to Random Acceleration Sequences 0.005 0 -0.005 -0.01 0 20 40 60 Time (s) 80 100 x 10 6 8 6 4 2 0 0 3 Variance of displacement (m2) Mean of displacement (m) 0.01 10 x 10 20 40 60 80 20 40 60 80 100 -3 2 1 0 0 100 Time (s) Fig. 7.6: Mean of response quantities for elastic-plastic structure to ground acceleration of three sequences Chapter 8 Use of Deterministic and Probabilistic Measures to Identify Unfavorable Earthquake Records (a) (a) (b) (b) 0.12 2 3 Δω = 0.10 rad/s Smax = 10 m /s Area = 1.0 0.08 0.06 Area = 1.0 0.04 Soft soil Medium soil Stiff soil Rock soil 0.5 S(ω ) m 2/s 3 S(ω ) m 2/s 3 0.1 Narrow band Kanai-Tajimi Band-limited 0.4 0.3 Area = 1.0 0.2 Area = 1.0 0.02 0.1 Area = 1.0 0 0 5 10 15 Frequency Hz 20 25 0 0 Area = 1.0 2 Area = 1.0 4 6 Frequency Hz 8 Fig. 8.2: (a) PSD function for ground acceleration models for medium soil, (b) Kanai-Tajimi PSD function for different soil types 10 Chapter 9 Damage Assessment of Inelastic Structures Under Worst Earthquake Loads (a) (b) 0.5 Critical input M4(ω) Amplitude spectra (m/s) F o u rie r a m p litu d e (m /s ) Acceleration /g / g A cceleration 0.5 0.4 0.3 0 0.2 0.1 -0.5 0 5 10 15 20 Time (s) Hz Frequency 25(b) 30 0 0 5 10 15 Frequency Frequency (Hz) Hz 20 Fig. 9.11: Critical acceleration for inelastic structure for case 2 (a) Time history, (b) Fourier amplitude spectrum 25 Chapter 10 Formulation of Evolutionary Waves Envelope function 1 Body waves Surface waves 0.8 What is the critical combination? 0.6 0.4 0.2 0 0 5 10 15 20 25 Time (s) 30 35 40 Surface waves 4 Acceleration (m/s 2) Acceleration (m/s 2) Body waves 2 0 -2 -4 0 5 10 15 20 25 Time (s) 30 35 40 Frequency content: 1.0~10.0Hz 4 2 0 -2 -4 0 5 10 15 20 25 Time (s) 30 35 Frequency content: 0.0~1.0Hz 40 Chapter 11 L2 L1 x2 x1 What is the bi-directional critical input? Fig.11.13 One sample set of Monte Carlo simulation of the 2-dimensional ground motion (2DGM) Fig.11.14 Comparison between critically correlated 2DGM and perfectly correlated ones Chapter 12 Optimal Placement of Visco-Elastic Dampers and Supporting Members Under Variable Critical Excitations Fig. 12.1: Structural model with viscoelastic damper including supporting member Fig.12.9: Variation of objective function in optimal placement, uniform placement and first-storey placement; (a) 3-storey model, (b) 10-storey model Chapter 13 Sustainability under uncertainties Fig.13.1 Concept of sustainable design considering varied structural performance caused by various uncertainties of structural parameters Chapter 14 Earthquake Response Bound Analysis of Uncertain Base-Isolated Buildings for Robustness Evaluation Fig.14.1 N-story baseisolated building model Fig.14.3 Dependence of critical combination of uncertain parameters on properties of objective function, (a) Inclusion monotonic, (b) non-monotonic Chapter 15 Future Directions Fig.15.5 Increase of credible bound of input energy for velocity power constraint due to lengthening of input excitation duration and decrease of damping ratio of structure Preface Engineers are always interested in the worst-case scenario. The seismic design of buildings should ensure structural safety against the worst possible future earthquakes. The features of this monograph are: (1) Consideration of elastic–plastic behavior of building structures in the critical excitation method for improved building-earthquake resilience, (2) Consideration of uncertainties of structural parameters in structural control and base-isolation for improved building-earthquake resilience, and (3) New insights into structural design of super high-rise buildings under longperiod ground motions (case study on tall buildings in mega cities in Japan during the 2011 off the Pacific coast of Tohoku earthquake on March 11). This book consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. Chapter 1 provides an overview of the effects of historic and recent strong earthquake ground motions on building structures and associated life loss. Chapter 2 provides comprehensive information about the most recent and devastating Tohoku earthquake of moment magnitude 9.0 which hit off the pacific coast of eastern Japan on 11 March 2011. This earthquake and the tsunami following it left severe damage to building structures and caused nearly 20,000 of losses of life. As is well known, the robust design of buildings for future earthquake loads requires reliable understanding of the ground motion characteristics. Accordingly, Chaps. 3 and 4 report on the characteristics of near-field (near-fault) ground motions with pulse-like acceleration. Furthermore, these two chapters provide simple mathematical models for this class of ground motions and associated structural response. Chapter 3 deals with the simulation of near-field ground motions with pulse-like acceleration while a critical excitation of multiple sequences for inelastic responses is discussed in Chap. 4. v vi Preface Chapters 5–7 deal with the characterization and modeling of earthquake ground motion of multiple sequences. Recently, this class of ground motions was clearly observed during the 2011 off the Pacific coast of Tohoku earthquake on March 11. This research subject is new and has not received adequate attention from researchers. For instance, most seismic codes specify design ground motions as single events. However, moderate ground motion with repeated acceleration sequences could lead to more severe damage to structures than a single sequence of strong ground motion. The worst-case scenario is studied within the deterministic and probabilistic frameworks. Characteristics of earthquake ground motion of repeated sequences are made clear in Chap. 5 while critical ground motion sequences are discussed in Chap. 6. In Chap. 7, responses of elastic–plastic structures to nonstationary random acceleration sequences are investigated and the reliability of such structures is evaluated. A practical problem always arises in the design of buildings against earthquake loads. It is always difficult to select a suite of suitable earthquake records from a large set of records as input to the nonlinear time-history analysis of structures. Chapter 8 provides deterministic and probabilistic measures that can be used to identify unfavorable accelerograms. This chapter provides simple concepts which can be utilized to select a suit of appropriate earthquake records for nonlinear timehistory analysis of structures. Chapters 9 and 10 deal with the worst-scenario of earthquake loads on inelastic structures with special emphasis on the type of seismic waves of the ground motion and damage quantification using damage indices. Chapter 11 deals with the worst-case scenario for bidirectional ground motions. Most of the current seismic-resistant design codes are based on the simulation of building response under uni-directional earthquake input. However, bidirectional input is inevitable for the reliable design of columns. Chapters 12 and 13 tackle the worst-case scenario for passively controlled buildings. The structural member stiffness and strength of buildings are uncertain due to various factors resulting from randomness, material deterioration, temperature dependence, etc. The passive damper systems are also uncertain depending on various sources. The concept of sustainable building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By predicting the response variability accurately, the elongation of service life of buildings may be possible. Chapter 14 focuses on the worst-case scenario for base-isolated buildings. The stiffness and damping of the base-isolation system and the stiffness of the superstructure are selected as uncertain parameters. An efficient methodology is explained to evaluate the robustness (variability of response) of an uncertain base-isolated building. The book closes with Chap. 15 on current challenges and future directions on design of building structures with greater earthquake resilience. The importance of the worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities has been recognized and demonstrated by the recent great earthquake (March 11, 2011) in Japan. Such understanding is of extreme significance especially for large or important structures. Preface vii The word ‘unexpected incident’ is often used in Japan after the 2011 great earthquake. It may be true that the return period of this class of earthquakes at the same place could be 500–1,000 years and the use of this word may be acceptable to some extent from the viewpoint of the balance between the construction cost and the safety level. However, the critical excitation method is expected or has a potential for enhancing the safety level of building structures against undesirable incidents drawn from this irrational concept in the future. One of the most important and challenging missions of structural engineers may be to narrow the range of such unexpected incidents in building structural design. Redundancy, robustness, and resilience are expected to play important roles in such circumstances. Izuru Takewaki Abbas Moustafa Kohei Fujita Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Background and Review . . . . . . . . . . . . . . . . . 1.2 Input Ground Motion and Worst-Case Scenario . 1.3 Organization of the Book . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Earthquake Resilience of High-Rise Buildings: Case Study of the 2011 Tohoku (Japan) Earthquake . . . . . . . . . . . . . . 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 General Characteristics of the 2011 Off the Pacific Coast of Tohoku Earthquake . . . . . . . . . . . . . . . . . . . 2.3 Seismic Response Simulation of Super High-Rise Buildings in Tokyo . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Properties of Ground Motions in Tokyo . . . . . 2.3.2 Measure of Criticality in Long-Period Ground Motions . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Seismic Response Simulation of Super High-Rise Buildings in Tokyo . . . . . . . . . . . . 2.4 Seismic Response of High-Rise Buildings to Simulated Long-Period Ground Motions (Japanese Government Action) . . . . . . . . . . . . . . . . . . 2.4.1 Characteristics of Simulated Long-Period Ground Motions . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Response Simulation of Super High-Rise Buildings Without and With High-Hardness Rubber Dampers. . . . . . . . . . . . . . . . . . . . . . 2.4.3 AIJ’s Research Result . . . . . . . . . . . . . . . . . . 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 3 5 ..... ..... 7 7 ..... 10 ..... ..... 13 13 ..... 17 ..... 19 ..... 25 ..... 25 . . . . 30 38 39 40 . . . . . . . . . . . . . . . . . . . . . . . . . . ix x 3 4 5 Contents Simulation of Near-Field Pulse-Like Ground Motion . . . . . . . 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Characterization and Representation of Near-field Pulse-Like Ground Motions . . . . . . . . . . . . . . . . . . . . . . 3.3 Representation of Near-field Pulse-Like Ground Motions Using Deterministic Models . . . . . . . . . . . . . . . 3.4 Representation of Near-Field Pulse-Like Ground Motions Using Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . 3.5 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... 43 43 ... 45 ... 52 . . . . . . . . 54 57 61 62 ..... ..... 65 65 ..... 70 ..... ..... ..... 71 77 79 ..... 79 ..... 82 . . . . . . . . . . . . 83 83 85 87 90 90 ........ ........ 93 93 ........ 94 ........ 100 ........ ........ ........ 103 111 112 Critical Characterization and Modeling of Pulse-Like Near-Field Strong Ground Motion . . . . . . . . . . . . . . . . . . 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Characteristics of Near-Field Pulse-Like Strong Ground Motion From Another Viewpoint . . . . . . . . . . . . . . . . 4.2.1 Measures Based on Recorded Free-Field Ground Motion. . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Measures Based on the Structural Response. . . 4.3 Modeling Near-Field Pulse-Like Ground Motion . . . . . 4.3.1 Representation of Pulse-Like Ground Motion Using Trigonometric Functions . . . . . . . . . . . 4.3.2 Representation of Pulse-Like Ground Motion Using Trigonometric Functions Modulated by Envelope Function . . . . . . . . . . . . . . . . . . 4.4 Damage-Based Critical Earthquake Ground Motion for Inelastic Structures . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . 4.4.2 Solution Procedures . . . . . . . . . . . . . . . . . . . 4.4.3 Illustrative Example . . . . . . . . . . . . . . . . . . . 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics of Earthquake Ground Motion of Repeated Sequences . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Characteristics of Earthquake Records of Repeated Sequences . . . . . . . . . . . . . . . . . . . . 5.3 Characteristics of Free-Field Acceleration Records of Repeated Sequences . . . . . . . . . . . . . . . . . . . . 5.4 Response Quantities of Inelastic Structures to Acceleration Sequences . . . . . . . . . . . . . . . . . . 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents 6 7 8 Modeling Critical Ground-Motion Sequences for Inelastic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Damage Assessment in Inelastic Structures Using Damage Indices . . . . . . . . . . . . . . . . . . . . . . . 6.3 Modeling Critical Ground-Motion Sequences for Inelastic Structures . . . . . . . . . . . . . . . . . . . . . . . 6.4 Numerical Illustrations and Discussions . . . . . . . . . . . 6.4.1 Bilinear Inelastic Single-Story Frame Structure 6.4.2 Two-Story Elastic–Plastic Framed Structure . . 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ..... ..... 115 115 ..... 119 . . . . . . 120 124 124 129 130 132 . . . . . . . . . . . . . . . . . . . . . . . . Response of Nonlinear SDOF Structures to Random Acceleration Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Characteristics of Acceleration Records of Repeated Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Representation of Random Ground Acceleration with Multiple Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 Response of Elastic–Plastic Structure to Nonstationary Random Acceleration Sequences . . . . . . . . . . . . . . . 7.4.2 Reliability of Nonlinear SDOF System to Random Acceleration Sequences . . . . . . . . . . . . . 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Use of Deterministic and Probabilistic Measures to Identify Unfavorable Earthquake Records . . . . . . . . . . . . . . . . . . . . . 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Use of Entropy as a Measure of Resonance/Criticality of Probabilistic Earthquake Models. . . . . . . . . . . . . . . . . 8.2.1 Stationary Narrow-Band White Noise Model . . . . 8.2.2 Stationary Band-Limited White Noise Model. . . . 8.2.3 Stationary Kanai-Tajimi Model . . . . . . . . . . . . . 8.2.4 Nonstationary and Evolutionary PSDF Models. . . 8.2.5 Relative Entropy Rate of Two Random Processes 8.3 Dispersion Index and Central Frequency . . . . . . . . . . . . . 8.3.1 Use of Entropy Rate and Dispersion Index to Measure Resonance of Earthquake Records . . . 8.3.2 Use of Deterministic Measures to Identify Resonance in Earthquake Records . . . . . . . . . . . 135 135 138 140 142 143 144 147 148 ... ... 151 151 . . . . . . . . . . . . . . 152 153 154 154 154 155 158 ... 159 ... 160 . . . . . . . xii Contents 8.4 Identification of Resonant of Design Records . . . . . 8.5 Summary . . . . . . . . . . . . References . . . . . . . . . . . . . . . 9 Accelerations .......... .......... .......... and ... ... ... Selection ............. ............. ............. Damage Assessment of Inelastic Structures Under Worst Earthquake Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Damage Assessment for Inelastic Structures Under Earthquakes . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Energy Dissipated by Inelastic Structures . . . 9.2.2 Damage Measures for Inelastic Structures . . . 9.3 Formulation of the Worst Case Scenario . . . . . . . . . . 9.4 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 9.4.1 Bilinear Inelastic Frame Structure. . . . . . . . . 9.4.2 Inelastic Two-Story Frame Structure . . . . . . . 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Critical Earthquake Loads for SDOF Inelastic Structures Considering Evolution of Seismic Waves . . . . . . . . . . . . . 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Dynamic Analysis and Energies Dissipated by Inelastic Structures . . . . . . . . . . . . . . . . . . . . . . . 10.3 Quantification of Structural Damage Using Damage Indices . . . . . . . . . . . . . . . . . . . . . . 10.4 Critical Earthquake Loads Considering Evolution of Seismic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Numerical Results and Discussions. . . . . . . . . . . . . . 10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 173 174 ...... ...... 177 177 . . . . . . . . . . . . . . . . . . 179 180 181 183 187 187 194 196 197 ...... ...... 203 203 ...... 205 ...... 206 . . . . . . . . 207 209 217 218 ..... ..... 221 221 ..... ..... ..... 222 222 223 ..... ..... 225 225 ..... 226 11 Critical Correlation of Bidirectional Horizontal Ground Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Penzien–Watabe Model and Extended Penzien–Watabe Model . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Penzien–Watabe Model . . . . . . . . . . . . . . . . . 11.2.2 Extended Penzien–Watabe Model. . . . . . . . . . 11.3 Stochastic Response to 2DGM Described by Extended Penzien–Watabe Model . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Definition of Nonstationary Ground Motion. . . 11.3.2 Stochastic Response Evaluation in Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents 11.4 Critical Excitation Method for Worst Cross PSD Function Between 2DGM . . . . . . . . . . . . . . . . . . . . . . . 11.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.1 Response to 2DGM with the Constraint of Sum of Auto PSD Functions . . . . . . . . . . . . . . . . . . . 11.5.2 Response to 2DGM Described by Extended Penzien–Watabe Model: Analysis From the Viewpoint of Critical Incident Angle . . . . . . . 11.5.3 Comparison of Response to Critically Correlated 2DGM with that to Perfectly Correlated 2DGM . . 11.5.4 Analysis of Recorded 2DGM . . . . . . . . . . . . . . . 11.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix 1: Computation of Coherence Function and Transformation of PSD Matrices . . . . . . . . . . . . . . . . . . . . Appendix 2: Horizontal Stiffness of Frame . . . . . . . . . . . . . . . . Appendix 3: Stochastic Response 1 . . . . . . . . . . . . . . . . . . . . . Appendix 4: Stochastic Response 2 . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Optimal Placement of Visco-Elastic Dampers and Supporting Members Under Variable Critical Excitations . . . . . . . . . . . . 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Structural Model with Visco-Elastic Dampers and their Supporting Members . . . . . . . . . . . . . . . . . . . . 12.3 Critical Excitation for Variable Design . . . . . . . . . . . . . . 12.4 Stochastic Response Evaluation in Frequency Domain . . . 12.4.1 3N Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 N Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Optimal Design Problem . . . . . . . . . . . . . . . . . . . . . . . . 12.6 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7 Algorithm for Optimal Damper Placement. . . . . . . . . . . . 12.7.1 Algorithm for Optimal Damper Placement and Optimal Design of Supporting Members . . . . 12.7.2 Sensitivity with Respect to Damper Area . . . . . . 12.7.3 Sensitivity with Respect to Stiffness of Supporting Member . . . . . . . . . . . . . . . . . . . 12.7.4 Sensitivities of Axial Force of Supporting Member . . . . . . . . . . . . . . . . . . . 12.8 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix 1: Equivalent Stiffness and Damping Coefficient of Damper Unit Including Supporting Member in N-Model (Eqs. (12.1) and (12.2)). . . . . . . . . . . . . . . . . . . . . xiii ... ... 228 229 ... 229 ... 234 ... ... ... 237 238 241 . . . . . . . . . . 242 243 243 245 246 ... ... 249 249 . . . . . . . . . . . . . . . . 250 253 254 254 256 256 257 258 ... ... 258 264 ... 266 ... ... ... 266 267 269 ... 270 . . . . . . . . . . . . . xiv Contents Appendix 2: Transformation Matrix from the Nodal Displacements to the Relative Displacements Between both Ends of Supporting Members. . . . . . . . . . . . . . . . . . . . . . . . . Appendix 3: Second-Order Sensitivities of the Equivalent Stiffness and Damping Coefficient. . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Earthquake Response Bound Analysis of Uncertain Passively Controlled Buildings for Robustness Evaluation . . . . . . . . . . . . . 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Concept of Sustainable Building Design Under Uncertain Structural-Parameter Environment . . . . . . . . . . . . . . . . . . . . 13.3 Interval Analysis Methods for Uncertain Structural Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.1 Interval Analysis Method Based on Approximation of First-Order Taylor Series Expansion . . . . . . . . . . . 13.3.2 Interval Analysis Method Based on Approximation of Second-Order Taylor Series Expansion . . . . . . . . . 13.4 Advanced Interval Analysis Method Based on the Information of the Approximation of Taylor Series Expansion . . . . . . . . . 13.4.1 Reanalysis Approach Based on the Structural Parameter Set Derived by the Taylor Series Approximation . . . . . . . . . . . . . . . . . . . . . . . 13.4.2 Varied Evaluation Point Method Considering the Influence of Initial Value Dependency. . . . . . . . . 13.4.3 Search of the Exact Solution . . . . . . . . . . . . . . . . . . 13.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Earthquake Response Bound Analysis of Uncertain Base-Isolated Buildings for Robustness Evaluation . . . . . . . . . . . . . . . . . . . . . . 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Modeling of Base-Isolated Buildings and Uncertainty of Isolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Past Work on Interval Analysis for Uncertain Input and Structural Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 Interval Analysis Using Taylor Series Expansion . . . . . . . . . . 14.4.1 Interval Analysis Using First-Order Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.2 Interval Analysis Using Second-Order Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.3 Interval Analysis Considering Non-Monotonic Property of Objective Function . . . . . . . . . . . . . . . . . . . . . . . 273 273 274 277 277 278 278 280 281 283 283 284 284 285 291 293 295 295 296 296 298 299 299 300 Contents 14.5 Numerical Verification of URP Method . . . . 14.5.1 Property of Base-Isolated Building . . 14.5.2 Input Ground Motions. . . . . . . . . . . 14.5.3 Interval Analysis for Interstory Drift of Base-Isolation Story . . . . . . . . . . 14.5.4 Interval Analysis for Top-Story Maximum Acceleration . . . . . . . . . . 14.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv ............ ............ ............ 302 303 304 ............ 304 ............ ............ ............ 309 311 312 15 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1 Earthquake Resilience . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Improving Earthquake Resilience Based on Redundancy and Robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 Resonant Response and Random Response . . . . . . . . . . 15.4 Robustness Function for Seismic Performance . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... 313 313 . . . . . . . . 314 314 316 319 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 . . . . . . . . 日本語解説 「極限外乱法」は、米国レンセラー工科大学のDrenick教授およ びコロンビア大学のShinozuka教授によりそれぞれ独立して1970 年頃に始められた分野であり、「最悪外乱法」とも呼ばれている。 2011.3.11の東北地方太平洋沖地震では、短時間の時間差を伴 う複数断層運動による複数大振幅波形の存在、予想を遥かに 超える津波の発生、原子力施設事故、天井などの2次部材被害、 長周期地震動による超高層建物の長時間大振幅揺れ等、いわ ゆる想定外の事象が多数発生した。大地震の発生前にすべて の事象を想定して建物を設計することは極めて困難であり、起こ り得る事象を可能な限り想定してその中で最悪のケースに対し て設計することを目指す本手法は信頼性の高い方法であるとい える。これまで、多数の被害地震を経験してその度に耐震規準 が改訂されているが、今なおこの手順が収束していない状況で は、このような最悪ケースを想定する方法は被害軽減の上で有 力なアプローチであるとともに、建物レジリエンスの飛躍的な向 上が期待される。
© Copyright 2026 Paperzz