CONCEPTUAL PHENOMENOLOGICAL MODEL FOR INTERACTION OF ASPHALT BINDERS WITH MINERAL FILLERS By: Ahmed F. Faheem, Hussain U Bahia University of Wisconsin- Madison Outline • Background • Introduction • Conceptual Model • Test for Free Asphalt Volume • Experimental Plan • Summary of Results • Factors Affecting Filler Stiffening • Summary of Findings and Conclusions Background • Einstein Model for Diluted Composites (1911) ηr = 1 + KEø ηr= Viscosity of composite/ viscosity of matrix KE= Einstein Constant =2.5 Ø: Filler volume fraction Fillers • Many modification to this equation have followed. Einstein Model After Shenoy 1999 Background • The Marion–Pierce model 2 * Gmastic * Gbinder 1 m • Nelsen Model Gc Gm 1 ABV P 1 B VP GP B GP Gm Gm 1 A Where A= KE-1, and 1 1 m 2 m Filler Maximum Packing Fraction. VP • BRRC Model R&B 1021.2 K (100 V F (1 K )) K = f/b, f = filler volume fraction (%), b = bitumen volume fraction (%) and Vf = % voids (Rigden) Evaluation of Models Evaluation of Prediction Models for Binder A Evaluation of Prediction models 1.00E+08 9.00E+07 8.00E+07 Marion-Pierce y = 10.108x - 1E+08 Marion-Peirce Model Nelsen y = 8.3524x - 1E+08 BRRC Model Nelsen Model Line of Equality Actual G* BRRC 7.00E+07 y = 3.3432x - 4E+07 Linear (Nelsen Model) Linear (BRRC Model) Linear (MarionPeirce Model) 6.00E+07 Filler volume concentration of 0.4 of total mix 5.00E+07 4.00E+07 3.00E+07 2.00E+07 1.00E+07 0.00E+00 0.00E+00 1.00E+07 Filler volume concentration of 0.2 of total mix 2.00E+07 3.00E+07 4.00E+07 5.00E+07 6.00E+07 Predicted G* 7.00E+07 8.00E+07 9.00E+07 1.00E+08 After Faheem et al 2008 Problem Statement • Currently the filler influence on asphalt mastic is estimated using the Fractional voids method. – Measures filler volume fraction at maximum mastic stiffness. – Does not elaborate the trend of increase in stiffness as the filler concentration increases. – Does not help identify the mechanism by which filler particles interact with the asphalt matrix. Hypothesis • The filler influence in the mastic follows two regions: a. b. DILUTED, where the increase in the stiffness takes a linear trend as a function of volume of filler, where the rate of increase is named: “Initial Stiffening Rate” CONCENTRATED, where the increase in stiffness transitions to a higher rate of stiffness called: “Terminal Stiffening Rate”. Conceptual Model G* Ratio vs. Filler Volume Fraction Diluted Region G* ratio 40 30 In the diluted region, the filler particles are separated enough by the free asphalt volume 20 Terminal Stiffening Rate Concentrated Region 50 10 0 0 20 40 Filler Volume Fraction (%) At this filler concentration, all the asphalt is influenced by the filler 60 Initial Stiffening Rate = Einstein Coefficient 80 Test for the Presence of Free Asphalt – Free Asphalt – Influenced Asphalt • Asphalt in the mastic is divided into 2 fractions Filler Particle Influenced Asphalt Free Asphalt • The free asphalt is holding the mastic system together (After Kanitpong 2004) Experimental Variables Filler Properties Binder Properties Mastic Properties 1- Filler source - Limestone - Dolomite Controlled Variable - Granite - Fly Ash - Carbon Black 1- PG grad - PG64-22 1- Filler Volume Fraction - 5 concentrations 1- Fractional Voids Dependent 2- Size distribution Variables 1- Complex Shear Modulus 2- Tack Factor 1- Relative Complex Shear Modulus 2- Tack Factor Summary of Results Physical Properties of Fillers Filler Type Granite Type C Fly Ash Dolomite Limestone Carbon Black Rigden Voids (%) 38% 26% 43% 35% 11% D10 (μm) 2.07 0.97 4.03 2.54 0.08 D50 (μm) 17.97 9.77 31.44 26.37 0.08 D90 (μm) 149.15 49.22 81.62 67.21 0.08 SG 2.62 2.53 2.59 2.65 0.23 Effect of Filler on Mastic Stiffness Relative G* 35 Dolomite Carbon Black Fly Ash Limestone Granite 30 G* Ratio 25 20 15 10 5 0 0 10 20 30 40 50 Filler Volume Fraction (%) 60 70 80 Mastic Stiffness and Tackiness Fly Ash 35 500 G*r Tackiness 400 G* Ratio 25 350 300 20 250 15 200 150 10 100 5 50 0 0 0 10 20 30 40 50 Filler Volume Fraction (%) 60 70 Tack Factor (s.N) 30 450 Mastic Stiffness and Tackiness Granite 35 G*r Tackiness 30 500 450 G* Ratio 25 350 300 20 250 15 200 150 10 100 5 50 0 0 0 10 20 30 40 50 Filler Volume Fraction (%) 60 70 Tack Factor (s.N) 400 Mastic Stiffness and Tackiness Carbon Black 35 500 G*r Tack Factor 30 450 G* Ratio 25 350 300 20 250 15 200 150 10 100 5 50 0 0 0 10 20 30 40 50 Filler Volume Fraction (%) 60 70 80 Tack Factor (s.N) 400 Factors Affecting Initial and Terminal Stiffening Rates Effect of Filler Size on Initial Stiffening Rate 160 140 Size (microns) 120 100 D90 D50 D10 Linear (D10) Linear (D50) Linear (D90) y = 1458.5x - 10.76 R2 = 0.983 80 60 y = 225.86x + 4.7035 R2 = 0.4348 40 20 0 0.00 y = 26.842x + 0.4617 R2 = 0.4269 0.02 0.04 0.06 0.08 Initial Rate 0.10 0.12 0.14 Factors Affecting Initial and Terminal Stiffening Rates (Cont’d) Effect of Filler Size on Terminal Stiffening Rate 160 D90 D50 D10 Linear (D90) Linear (D50) Linear (D10) 140 Size (microns) 120 y = 46.176x + 7.6888 R2 = 0.6805 100 80 60 y = 1.3307x + 15.346 R2 = 0.0104 40 20 y = 0.0845x + 1.825 R2 = 0.0029 0 0 0.5 1 1.5 2 Terminal Rate 2.5 3 3.5 Factors Affecting Initial and Terminal Stiffening Rates (Cont’d) Initial and Terminal Stiffening Rates Against Rigden Voids 0.10 Initial Stiffening Rate 3 Initial Rate Terminal Rate Linear (Terminal Rate) Linear (Initial Rate) 2.5 0.08 2 0.06 1.5 Terminal Rate y = 3.2437x + 0.3451 R2 = 0.178 0.04 1 Initial Rate y = 0.2421x - 0.0204 R2 = 0.7058 0.02 0.5 0.00 5% 10% 15% 20% 25% 30% Rigden Voids (%) 35% 40% 0 45% Terminal Stiffening Rate 0.12 How to Measure the Influenced Asphalt Volume Fraction Determination of Influenced Asphalt Volume Fraction 450 Tack Factor (s.N) 400 350 300 y = -1.4069x2 + 101.86x - 1462 R2 = 1 Estimated Influenncing Filler Concentration = 36.2% 250 200 150 100 50 Using the fitted parabola, the estimated "Influenced Asphalt Volume Fraction" = 63.8% 0 20 25 30 35 40 45 Filler Volume Concentration (%) 50 55 Fractional Voids vs. Influenced Asphalt Volume Influenced Asphalt (%) 80% 70% 60% 50% y = 0.0302x + 0.6517 R2 = 0.0008 40% 25% 30% 35% Rigden Voids (%) 40% (Fixed Asphalt) 45% Factors Affecting Initial and Terminal Stiffening Rates (Cont’d) Influenced Asphalt Against Initial and Terminal Stiffening Rates Initial Stiffening Rate 0.35 0.30 3 Initial Rate Terminal Rate Linear (Terminal Rate) Linear (Initial Rate) 2.5 y = 0.1101x - 5.6606 R2 = 0.9593 0.25 0.20 2 1.5 0.15 1 0.10 y = 0.0025x - 0.0993 0.5 R2 = 0.5869 0.05 0.00 55.0 60.0 65.0 70.0 Influenced Asphalt (%) 75.0 0 80.0 Terminal Stiffening Rate 0.40 Summary of Findings • The tackiness test allows calculating the volume of the “influenced asphalt” directly • The tackiness test helped validate the Two-Regions hypothesis of this study • The stiffening rate within the Diluted Region is highly dependent on the Rigden voids of the filler and the Nominal Maximum Particle Size. • The stiffening rate within the Concentrated Region, which is assumed to be an indication of filler-bitumen interaction, is highly dependent on the Influenced Asphalt Volume fraction. Update and Acknowledgment • Update on Recent Testing – Recent testing matched the results of this study. – New testing included measuring physical and chemical properties of filler. • Thanks to MTE for their help in filler procurment and testing. Conceptual Model Parameters 50 G* ratio 40 30 In the diluted region, the filler particles are separated enough by the free asphalt volume 20 10 Concentrated Region Diluted Region G* Ratio vs. Filler Volume Fraction 2 1 0 0 20 40 3 60 80 Filler Volume Fraction (%) 1. Initial Stiffening Rate 2. Terminal Stiffening Rate 3. Critical Filler Concentration At this concentration the transition is due to the consumption of “Free Asphalt” Thank You!
© Copyright 2026 Paperzz