Lorentz transformations for nonabelian coordinates Paul Koerber, UBC Vancouver, January 29, 2005 0. Introduction Coinciding Dp-branes ... 1 2 ... N U £ U £ ¢¢¢£ U 1234 N U N Transversal coordinates become matrix-valued! Contents 1. General coordinate transformations for matrices hep-th/0403289, Brecher, Furuuchi, Ling, Van Raamsdonk Transformation law Covariant vector field Invariant actions 2. Mixing transverse & longitudinal coordinates: Lorentz-boosts Work in progress, Brecher, PK, Ling, Van Raamsdonk Static gauge Search for covariant description 3. Conclusions/Further research 1. General coordinate invariance for matrices X i : matrix-valued D0-brane coordinates i y : bulk Bulk: i i y F y i i X F; X such that F; H; X F ±H;X composition law naive: F; X @i : : : @i n F i X i : : : X i n n n X Impossible! 0108161, de Boer, Schalm i i X F y; X ; g y Properties: Composition law F; H; X ; g; gH F ± H ; X ; g Basepoint independence @ j F y; X ¡ y; g y i @y Diagonal matrices abelian limit Linear transformations: simple i M k l y l ak ; X ; g M i j X j aj Linear in F i F H ; X ; g i F; X ; gi H ; X ; g Covariant vector field First step: building block Abelian case x vy j j i vF @ F y v i y y Non-abelian generalization j j i VF @ F y V i y y construct order by order Existence Vy Vyi X ; g i vy x; g; X ; g canonical choice, but not unique X Vy Does not always work: check basepoint independence Invariant actions Second step Z S Z dt q ddy g y L Vy ; g; R; r R; : : :± Vy Scalar Time= spectator Integrate whole space Integral representation Z ddk i ki Vyi ± Vy q e g y ¼ Properties: Every generally covariant action can be written in this form L such that @² i L X ² can be covariantized Many possible invariant actions! 2. Mixing transverse & longitudinal coordinates Until now: general coordinate invariance for transverse coordinates Mixing transverse & longitudinal: harder Step back: Lorentz boost for D0-branes 1. Covariant description abelian case 2. Static gauge 3. Search for covariant description Covariant description abelian case 10 coordinates treated in the same way ¹ i x ¿ t ¿; x ¿ Action: Z S¡ s d¿ dx ¹ dx ¹ d¿ d¿ Z ¡ v u µ u dt ¶ t d¿ d¿ à ¡ dx i ! d¿ t weight: -1 •Target-space general coordinate invariance • t reparametrization invariance (static gauge Derivative corrections possible ¿0 t ) Non-abelian case T ¿; X i ¿ to matrices Promote Static gauge: ¿0 T ¿ must be matrix too Nature of T ¿; X i ¿ ? Not just a matrix function! Already fails for diagonal matrices: Tj ¿j ; X ji ¿j to be independent we want à Nature of dT dX i ; d¿ d¿ ! ? Severe conceptual problems! Static gauge approach: abelian case x¹ ¿ t ¿; x i ¿ t ; xi t ¿! Boost: ¿0 t x 0i t x i t ¯ i t t 0 t t ¯ i x i t t 06 t outside static gauge Compensating diffeomorphism: ixl ±x i ¯ i t ¡ ¯ l x 0 i 0 t t ¡ ¯i x t Remark x is not invariant add corrections terms to build: q ¡ ¡ x Static gauge approach: non-abelian case ³ iX l ±X i ¯ i ¡ ¯ l X ´ where A : : : A n AP : : : A P n P n X Preserve the Lorentz-algebra: i ¯ ¡ ¯i j ±¯; ±¯ X i ̄ X j ̄j Nested symmetrizations Nested Symmetrizations A : : : A n B : : : B r A : : : A n B : : : B r ³ Xr Xn A i ; B k A j ; B l i 6 j k6 l A : : : A i : : : A j : : : A n B : : : B k : ::B l :: : Br ¡ Xr Xn Bk ; A i ; Bl i k6 l A : : : A i : : : A n B : : : B k :::B l : :: Br : O ; ´ ´ We find: i i j ±¯ ; ±¯ X i ̄ ¯ ¡ ¯ X j ̄j i kl ¯ k ¯ C l j i Cij k ¡ Xi ; X j ; X k X ; X k; X We must add a correction: ³ ´ ³ ´ i X l ¯ ij l ±X i ¯ i ¡ ¯ l X X C j l We find (up to 2 commutators): ±X i µ h j t j t ::: l j t X ¯ i t ¯ ¡ X X E X C ¡ E X E X j ; X j ; X l Xi t ij l t t i l ´ Xj X j ; X Xi X ; X j ; X l i; X l j j t j t j t E X t E X t E X t X i X j X j ; X j ; X l ³ ´ j t j t ¡ E X t E X t X i ; X j X j ; X l X i ; X j X j ; X l X i; X l X j ; X j µ j t j t X E j t X ::: E X E X j ; X X X j ; X X i X l ; X j t t t j ¡ Xi j l; X j ´ X j X i ; X j X j ; X l ¡ X l X i ; X j X j ; X j i j t j t j t j t ¡ E X t E X t E X t E X t X i X j X j ; X j X j ; X l O ; : ¡ where j E j t ±t u ¡ X X ± u u t Properties transformation law Unique up to field redefinitions #d/dt=#X-1 different invariants in the action More speculative: ³ ´ i X l ¯ l ±X i ¯ i t ¡ ¯ l X ±l X i X i t ¡ ¯ l X l ¡ X i t Covariant objects: currents Abelian case Z Z C¹ dx ¹ dd y C¹ yJ ¹ y ½ D0-brane charge and current J¹ Z J¹ Ji ¹ dy d¿±d y¡ X ¿ d¿ Static gauge: ½ ±d ~¡ ~ y x t i d i J ± y¡ ~ ~ x t y Calculate moments i :::i n Á Z ddyÁ y; ty i : : : y i n Transformation law ~ ¢r ½ ~ ¢~ ±½ y ; t ¯~ ¢J ~ y ; t¡ t ¯ ~ y ; t ¡ ¯ ~ y @t ½ ~ y; t ~ ~ ¢r J~ ~ ¢~ ±J~ y ; t ¯½ ~ y ; t ¡ t ¯ ~ y ; t ¡ ¯ ~ y @t J~ y; t ~ becomes: i ¢¢¢i n ¯ ¢J i ¢¢¢i n nt ¯ i j i ¢¢¢in ±½ ½i ¢¢¢i n ¡ ¯ j @t ½ i ¢¢¢i n i ¢¢¢i n i ~i ¢¢¢in j i ¢¢¢i n ~ ±J~ ¯½ nt ¯ J ¡ ¯ j @t J~ Non-abelian currents Start with: i ¢¢¢i n ½ X i ¢¢¢X i n i i ¢¢¢i n i i X X ¢¢¢X i n J Problem Lorentz covariance: nested symmetrizations Add correction terms: X n i :::i Cp pX i p: : : X i n n ¡ p p p µ ¶ X n i :::i p i i :::i p i i ¢¢¢in i i p i n J X C E X : : : X p p n ¡ p p p i ¢¢¢in ½ Solve for Cp; E p •Current conservation=gauge invariance WZ d i :::i i i :::i Cp p pE p p dt •Do not need to use the trace •Field redefinitions can be absorbed in C •Solution is not unique Charge density of dielectric branes Hashimoto 0401043 N D0-branes R Xi Li N Add family of terms L i ; L j i ² i j k L k Invariant action Avoid partial integration identities Construct action as a density Z dd yL y ; t with ~ S ~ ¢~ ±L y ; t ¡ t ¯~ ¢r L ~ y ; t¡ ¯ ~ y@ y; t ~ tL µq start with: µq ± ¶ ¡ X i :::i n L µ q ¶ d ¡ ¯l Xl ¡ X dt i ¡ XX :::X ¶ in Result X 0 n i :::i p i p i ¢¢¢i n i n L C X : : : X p n ¡ p p p 0 C i :::i n n q q @ i :::i n i :::i n C E j ¡ X ¡ X n n @X j q X @ @ Rj :::j k i :::i n ; ::: ¡ X k @X j @X j k In particular: q q @ @ @ 0 i Ri j C ¡ X E ¡ X i i @X j @X @ X q @ @ @ ij k i ¡ X R j k @X @X @X Delta function We did not use the trace: L can be used a our `delta function’ We need an object V to produce terms such as: Z d ¹ º d y V¹ ; Vº V ;V L Covariant vector field Vy¹ Vy¹ dx ¹ Abelian case: complex expression Non-abelian case: possible (must satisfy transformation law) Conclusions/Further research Consistent transformation law: possible! Invariant actions: possible! Building blocks: V & L Understand ambiguity Understand which lowest order terms All possible invariant actions? T-duality
© Copyright 2026 Paperzz