Gaussian Integrals Jan Larsen Intelligent Signal Processing Group Informatics and Mathematical Modelling Technical University of Denmark web: isp.imm.dtu.dk, email: [email protected] Version 2, January 5, 2005 1 Product of Gaussians Suppose that x ∈ Rd and pi (x) ∼ N (ai , Ai ) = 1 |2πAi | where xi = x − ai , i = 1, 2, · · · , M. Consider the evaluation of integrals like pi (x) dx, |x|q x −1 e− 2 xi Ai 1 1 2 |x|q i xi pi (x) dx (1) (2) i The solutions can be obtained by using the fundamental proposition Eq. (6). 2 Fundamental Proposition Define a common Gaussian density pc (x) ∼ N (c, C) with xc = x − c −1 xc = C Ai xi C = i i 1 A−1 i (3) (4) −1 (5) then pc (x) = 1 |2πA | 2 1 · pk (x) · exp (ai − aj ) B ij (ai − aj ) 1 2 |2πC| 2 i>j k where B ij = B ji = A−1 i (6) −1 A−1 k A−1 j (7) (xi − xj ) B ij (xi − xj ) (8) k Proof Consider writing −1 x xc = c C −1 x i Ai xi − i i>j The left hand side of (8) can cf. (4) and (5) be expressed as: −1 −1 −1 xc = x A−1 A−1 x c C i Ai j xj k ij (9) k The right hand side of (8) can be rewritten as x B ij xi + x A−1 i i B ij xj i − i j=i (10) j=i Comparison of (9) and (10) provides the relations: B ij = A−1 i A−1 i − B ij = A−1 i −1 A−1 k k j=i A−1 j (11) A−1 i (12) −1 A−1 k k Equation (12) is true since A−1 i − A−1 i j=i −1 A−1 k −1 A−1 j = Ai k A−1 i − A−1 i j j A−1 k A−1 i (13) −1 A−1 k A−1 j = 0 (14) k A−1 i −1 k −1 A−1 k k 2 −1 A−1 j = Ai (15) j −1 A−1 k A−1 j = I (16) k A−1 j = j A−1 k (17) k 3 General Cases 3.1 Integral of products Since pc (x) dx = 1 then by using (6) 1 |2πC| 2 1 I= pk (x) dx = exp − (ai − aj ) B ij (ai − aj ) 1 · 2 2 |2πA | i>j k (18) 4 Special Cases 4.1 Propagation of mean value Consider the evaluation of φj (x)p(x) dx where p(x) = N (u, S) and φj (x) = exp[−(x − xj ) Λ−1 (x − xj )/2] = |2πΛ| 2 · N (xj , Λ) 1 In the case M = 2, cf. (5) and (7), −1 −1 −1 −1 −1 A1 + A−1 A2 = A1 (A−1 = (A1 + A2 )−1 B 12 = A−1 1 2 1 + A2 )A2 −1 −1 C = A−1 1 + A2 According to (18) with a1 = xj , A1 = Λ, a2 = u, and A2 = S. 1 |C| 2 1 −1 I = (A1 + A2 ) (a1 − a2 ) 1 1 · exp − (a1 − a2 ) 2 |2πA1 | 2 |A2 | 2 1 1 −1 · exp − (a1 − a2 ) (A1 + A2 ) (a1 − a2 ) = 1 2 |2πA1 | 2 |C −1 A2 | 1 1 −1 (A1 + A2 ) (a1 − a2 ) = 1 1 · exp − (a1 − a2 ) 2 2 |2πA1 | 2 |A−1 1 A2 + I| That is, 1 2 3 (20) (21) (22) φj (x)p(x) dx = |2πΛ| N (xj , Λ)N (u, S) dx 1 −1 −1 − 21 = |Λ S + I| · exp − (xj − u) (Λ + S) (xj − u) 2 Ij = (19) (23)
© Copyright 2026 Paperzz