Chapter 4 Applications of Derivatives Copyright © 2008 4.1 Extreme Values of Functions Slide 4 - 3 Slide 4 - 4 Copyright © 2008 Slide 4 - 5 Slide 4 - 6 Slide 4 - 7 How to find local extreme values Slide 4 - 8 Copyright © 2008 Slide 4 - 9 Slide 4 - 10 Slide 4 - 11 Slide 4 - 12 Copyright © 2008 Slide 4 - 13 Copyright © 2008 Slide 4 - 14 Not every critical point or endpoint signals the presence of an extreme value. Copyright © 2008 Slide 4 - 15 4.2 The Mean Value Theorem Slide 4 - 17 Copyright © 2008 Slide 4 - 18 Copyright © 2008 Slide 4 - 19 Copyright © 2008 Slide 4 - 20 Slide 4 - 21 Slide 4 - 22 Mean Value Theorem says that some interior point the instantaneous change must equal the average change over the entire interval. Slide 4 - 23 Slide 4 - 24 Slide 4 - 25 Proof: ππ π₯1 πππ π₯2 πππ πππ¦ π‘π€π πππππ‘π ππ π, π , πππ π₯1 < π₯2 , π‘βππ π π₯1 = π π₯2 . π π ππ‘ππ ππππ π‘βπ ππππ π£πππ’π π‘βππππππ ππ π₯1 , π₯2 ; π π₯2 β π(π₯1 ) = π β² π , = 0 π ππ π πππ πππππ‘ ππ π₯1 , π₯2 π₯2 β π₯1 π π₯1 = π(π₯2 ) Slide 4 - 26 Copyright © 2008 Slide 4 - 27 4.3 Monotonic Functions and The First Derivative Test Slide 4 - 29 Slide 4 - 30 Slide 4 - 31 Slide 4 - 32 Slide 4 - 33 Slide 4 - 34 Slide 4 - 35 4.4 Concavity and Curve Sketching Slide 4 - 37 Slide 4 - 38 Slide 4 - 39 Slide 4 - 40 Slide 4 - 41 Copyright © 2008 Slide 4 - 42 Copyright © 2008 Slide 4 - 43 Slide 4 - 44 Slide 4 - 45 Copyright © 2008 Slide 4 - 46 Slide 4 - 47 4.6 Indeterminate Forms and ^ Lβ Hopitalβs Rule Slide 4 - 49 Slide 4 - 50 Slide 4 - 51 Copyright © 2008 Slide 4 - 52 Slide 4 - 53 Slide 4 - 55 Slide 4 - 56 Slide 4 - 57 Slide 4 - 58 Slide 4 - 59 4.8 Antiderivatives Slide 4 - 61 Slide 4 - 62 Copyright © 2008 Slide 4 - 63 Slide 4 - 64 Slide 4 - 65 Slide 4 - 66
© Copyright 2026 Paperzz