Slide 4

Chapter 4
Applications of Derivatives
Copyright © 2008
4.1
Extreme Values of Functions
Slide 4 - 3
Slide 4 - 4
Copyright © 2008
Slide 4 - 5
Slide 4 - 6
Slide 4 - 7
How to find local extreme values
Slide 4 - 8
Copyright © 2008
Slide 4 - 9
Slide 4 - 10
Slide 4 - 11
Slide 4 - 12
Copyright © 2008
Slide 4 - 13
Copyright © 2008
Slide 4 - 14
Not every critical point or
endpoint signals the
presence of an extreme
value.
Copyright © 2008
Slide 4 - 15
4.2
The Mean Value Theorem
Slide 4 - 17
Copyright © 2008
Slide 4 - 18
Copyright © 2008
Slide 4 - 19
Copyright © 2008
Slide 4 - 20
Slide 4 - 21
Slide 4 - 22
Mean Value Theorem says
that some interior point the
instantaneous change must
equal the average change
over the entire interval.
Slide 4 - 23
Slide 4 - 24
Slide 4 - 25
Proof: 𝑖𝑓 π‘₯1 π‘Žπ‘›π‘‘ π‘₯2 π‘Žπ‘Ÿπ‘’ π‘Žπ‘›π‘¦ π‘‘π‘€π‘œ π‘π‘œπ‘–π‘›π‘‘π‘  𝑖𝑛 π‘Ž, 𝑏 , π‘Žπ‘›π‘‘ π‘₯1 <
π‘₯2 , π‘‘β„Žπ‘’π‘› 𝑓 π‘₯1 = 𝑓 π‘₯2 .
𝑓 π‘ π‘Žπ‘‘π‘–π‘ π‘“π‘–π‘’π‘  π‘‘β„Žπ‘’ π‘šπ‘’π‘Žπ‘› π‘£π‘Žπ‘™π‘’π‘’ π‘‘β„Žπ‘’π‘Ÿπ‘œπ‘Ÿπ‘’π‘š π‘œπ‘› π‘₯1 , π‘₯2 ;
𝑓 π‘₯2 βˆ’ 𝑓(π‘₯1 )
= 𝑓 β€² 𝑐 , = 0 𝑐 𝑖𝑠 π‘ π‘œπ‘šπ‘’ π‘π‘œπ‘–π‘›π‘‘ 𝑖𝑛 π‘₯1 , π‘₯2
π‘₯2 βˆ’ π‘₯1
𝑓 π‘₯1 = 𝑓(π‘₯2 )
Slide 4 - 26
Copyright © 2008
Slide 4 - 27
4.3
Monotonic Functions and
The First Derivative Test
Slide 4 - 29
Slide 4 - 30
Slide 4 - 31
Slide 4 - 32
Slide 4 - 33
Slide 4 - 34
Slide 4 - 35
4.4
Concavity and Curve Sketching
Slide 4 - 37
Slide 4 - 38
Slide 4 - 39
Slide 4 - 40
Slide 4 - 41
Copyright © 2008
Slide 4 - 42
Copyright © 2008
Slide 4 - 43
Slide 4 - 44
Slide 4 - 45
Copyright © 2008
Slide 4 - 46
Slide 4 - 47
4.6
Indeterminate Forms and
^
L’ Hopital’s
Rule
Slide 4 - 49
Slide 4 - 50
Slide 4 - 51
Copyright © 2008
Slide 4 - 52
Slide 4 - 53
Slide 4 - 55
Slide 4 - 56
Slide 4 - 57
Slide 4 - 58
Slide 4 - 59
4.8
Antiderivatives
Slide 4 - 61
Slide 4 - 62
Copyright © 2008
Slide 4 - 63
Slide 4 - 64
Slide 4 - 65
Slide 4 - 66