ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino Planar 2 DOF manipulator Reference planner: a numerical example Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 2 Planar two-arm manipulator – 1 R 2 = R TCP This simple manipulator cannot provide 3 DOF, since it has only two joints We will compute below the kinematics functions y This is the third Euler angle l2 q2 l1 R1 q1 R0 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 3 Planar two-arm manipulator – 2 Direct position KF, assuming pT = й клx 1 x 2 T йq q щ fщ , q = ъ кл 1 2 ъ ы ы x є x 1 = l 1 cos(q1 ) + l 2 cos(q1 + q2 ) = l 1c1 + l 2c12 y є x 2 = l 1 sin(q1 ) + l 2 sin(q1 + q2 ) = l 1s1 + l 2s12 y = (q1 + q2 ) Direct velocity KF x&= - l 1s1q& - l 2s12 (q& + q& ) 1 1 2 y&= l 1c1q& + l 2c12 (q& + q& ) 1 1 2 y&= (q& + q& ) 1 2 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 4 Planar two-arm manipulator – 3 Analytical Jacobian й- l s - l s щ l s 2 12 2 12 ъ к 11 J a = кк l 1c1 + l 2c12 l 2c12 ъ ъ к ъ 1 1 кл ъ ы &щ Geometric Jacobian, assuming w T = й 0 0 y кл ъ ы йJ щ J L2 ъ J g = кк L 1 ъ J J A2 ы кл A 1 ъ All joints are revolute, hence: Basilio Bona - DAUIN - PoliTo J L 1 = k 0 ґ r 0, TCP J L 2 = k1 ґ r1, TCP J A1 = k0 J A 2 = k1 ROBOTICS 01PEEQW - 2015/2016 5 Reference planner – sampled time Use the 2-1-2 approach Use the s-function planner Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 6 Accelerations Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 7 Velocities Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 8 Example: angles Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 9 Cartesian space velocities Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 10 Cartesian space positions y x Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 11 Cartesian space velocities Vmax = 2.0 Basilio Bona - DAUIN - PoliTo Vmax = 1.5 ROBOTICS 01PEEQW - 2015/2016 12 Joint space q2 q1 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 13
© Copyright 2026 Paperzz