Quarkonia and heavy-light mesons in a covariant quark model Sofia Leitão CFTP, University of Lisbon, Portugal in collaboration with: Alfred Stadler, M. T. Peña and Elmar P. Biernat HUGS, JLab, USA June, 2015 Sofia Leitão A unified model for all ๐ ๐ mesons Much important work was done on meson structure: ๏ง Cornell-type potential models (Isgur and Godfrey, Spence and Vary, etc.) But: nonrelativistic (or โrelativizedโ); structure of constituent quark and relation to existence of zero-mass pion in chiral limit not addressed ๏ง Dyson-Schwinger approach (C. Roberts et al.) But: Euclidean space; only Lorentz vector confining interaction ๏ง Lattice QCD (also Euclidean space), EFT, Bethe-Salpeter, Light-front, Point-form, โฆ Our objectives: ๏ง Construct a model to describe all ๐ ๐-type mesons ๏ง Covariant framework (CST) - light quarks require relativistic treatment Work in Minkowski space (physical momenta) ๏ง Quark self-energy from ๐ ๐ interaction kernel (consistent quark mass function) ๏ง Chiral symmetry: massless pion in chiral limit of vanishing bare quark mass ๏ง Calculate meson spectrum and bound state vertex functions (wave functions) ๏ง Pion elastic and transition form factors ๏ง Learn about confining interaction (scalar vs. vector, etc.) HUGS, JLab, USA June, 2015 Sofia Leitão 2 CST main idea interaction kernel ๐ scattering problem ๐ = + ๐ scattering amplitude ๐ ๏ง If kernel ๐ฑ = โ (all 1PI diagrams) โ exact result for ๐ ๏ง Usual truncation: ladder approximation ๏ง Cancelation theorem: ๐ 3 - theory 2 1 + = [F.Gross, PR186, 1969] [F.Gross, Relativistic Quantum Mechanics and Field Theory, 2004] cancellation in all orders and exact in heavy-mass limit ! x particle 1 on mass-shell: ๐12 = ๐12 A โgood wayโ to sum the contribution of all ladder + crossed ladder diagrams is to use the approximation of just 1 ladder diagram with the one particle on its mass-shell. HUGS, JLab, USA June, 2015 Sofia Leitão 3 Covariant two-body bound-state equation Start from the Bethe-Salpeter (BS) equation ๐4๐ ฮ๐ต๐ ๐, ๐ = ๐ ๐ฑ ๐, ๐; ๐ ๐1 (๐1 )ฮ๐ต๐ ๐, ๐ ๐2 (๐2 ) 4 2๐ 1 ๐ด๐ ๐๐ = ๐ด๐ ๐๐2 + ๐๐ ๐ต๐ (๐๐2 ) ๐๐ ๐๐ = ๐0๐ โ ๐๐ + ฮฃ๐ ๐๐ โ ๐๐ ๐ = ๐1 โ ๐2 ๐ = ๐1 + ๐2 /2 ฮ ๐, ๐ or ฮ(๐1 , ๐2 ) ๐ฑ ๐, ๐ total momentum relative momentum vertex function kernel Kernel contains confining interaction + color Coulomb +/or constant In the BS equation it is effectively iterated to all orders But the complete kernel is a sum of an infinite number of irreducible diagrams โ has to be truncated (most often: ladder approximation) Now we take a closer look at the loop integration over ๐0 HUGS, JLab, USA June, 2015 Sofia Leitão 4 From Bethe-Salpeter to CST Covariant Spectator Theory (CST) Mini-review: A.Stadler, F. Gross, Few-Body Syst. 49, 91 (2010) Integration over relative energy ๐0 : ๏ง Keep only pole contributions from propagators ๏ง Cancellations between ladder and crossed ladder diagrams can occur ๏ง Reduction to 3D loop integrations, but covariant ๏ง Works very well in few-nucleon systems If bound-state mass ๐ is small: both poles are close together (both important) Symmetrize pole contributions from both half planes: resulting equation is symmetric under charge conjugation HUGS, JLab, USA June, 2015 Sofia Leitão 5 Four-channel CST equation Closed set of equations when external legs are systematically placed on-shell Approximations can be made for special cases: ๏ง mesons with different quark constituent masses: 2 channels ๏ง large bound-state mass: 1 channel Nonrelativistic limit: Schrödinger equation HUGS, JLab, USA June, 2015 Sofia Leitão 6 CST bound-state (cont.) 2CS Dominant pole! 1CS Why to study such an equation? ๐ฑ ๏ง prepare and test the numerics ๏ง test already our phenomenological choice for ๐ฑ ๏ง should be a good approach to large ๐ systems: Quarkonia (๐๐) and heavy-light (๐๐) HUGS, JLab, USA June, 2015 Sofia Leitão 7 Interaction kernel ๏ง The 1CS eq. reads: ฮ1๐ถ๐ ๐3 ๐ ๐, ๐ = โโซ 2๐ธ๐1 2๐ 3๐ฑ ๐, ๐; ๐ ฮ1 ๐1 ฮ1๐ถ๐ ๐, ๐ ๐2 ๐2 , ๐2 ๐2 = ๏ง Vertex function for a pseudoscalar meson: 1 ๐02 + ฮฃ2 ๐2 โ ๐2 + โ๐๐ , ๐๐ ฮ ๐ = ฮ1 ๐ ๐พ 5 + ฮ2 ๐ ๐พ 5 ๐2 โ ๐2 , the most general form for CST. ๏ง Interquark interaction (phenomenological) ๐ฑ ๐, ๐ = ๐ ๐๐ฟ ๐, ๐ 1 โ ๐ ๐1 โ ๐2 โ ๐ ๐ ๐พ1 โ ๐ ๐พ2 + ๐ถ ๐๐๐บ๐ธ ๐, ๐ correct nonrelativictic limit for arbitrary ๐ฆ ๐ ๐ 1 โ ๐ ๐1 โ ๐2 + ๐พ15 โ ๐พ25 โ ๐ ๐พ1 โ ๐พ2 HUGS, JLab, USA June, 2015 ๐ โ ๐พ2 ๐ฟ 3 (๐ โ ๐) ๐ ๐ + ๐ช ๐พ1 โ ๐พ2 2๐ธ๐1 One-gluon-exchange (OGE) Linear confinement ๐๐ฟ ๐, ๐ ๐ ๐พ1 Sofia Leitão Constant CST ๐๐- scattering studies constraints - Lorentz structure 8 Linear confinement in momentum space SL, A. Stadler, E. Biernat, M.T. Peña; PRD90, 096003 (2014) Nonrelativistic case ๐๐ฟ ๐ = ๐๐ ๐๐ฟ,๐ ๐ = ๐ 1 โ ๐ โ๐๐ ๐ equiv. ๐ ๐๐ฟ,๐ ๐ = ๐๐ด,๐ ๐ โ ๐๐ด,๐ (0), with ๐๐ด,๐ ๐ โก โ ๐ โ๐๐ ๐ Fourier Transform ๐๐ฟ,๐ ๐, ๐ = ๐๐ด,๐ ๐ โ 2๐ 3 ๐ฟ (3) ๐ 3 ๐โฒ ๐ โซ ๐๐ด,๐ ๐โฒ lim ๐ โ 0 ๐๐ฟ ๐, ๐ = ๐๐ด ๐ โ 2๐ 3 ๐ฟ 3 2๐ 3 ๐3๐โฒ ๐ โซ ๐๐ด ๐โฒ , 3 2๐ ๐๐ด ๐ โก โ Relativistic case ๐๐ฟ ๐, ๐ = ๐๐ด ๐, ๐ โ 2๐ธ๐1 2๐ 3 ๐ฟ 3 ๐โ๐ ๐ 3 ๐โฒ โฒ ๐ ๐, ๐ ๐ด 2๐ 3 2๐ธ๐1โฒ ๐๐ด ๐, ๐ = โ 8๐๐ ๐๐ 8๐๐ ๐โ๐ 4 ๏ผ Covariant; ๏ผ ๐3๐ โซ 2๐ธ ๐๐ฟ ๐1 ๐, ๐ = 0; ๏ผ nonrelativistic limit: HUGS, JLab, USA necessary to prove chiral symmetry 3 lim โซ ๐ ๐ ๐๐ฟ,๐ ๐ โ ๐ ๐ ๐ = ๐โซ ๐โ0 June, 2015 Sofia Leitão ๐3๐ ๐โ๐ 4 ๐ ๐ โ๐ ๐ well-defined integral as a Cauchy Principal Value integral 9 Input: ๐๐ = ๐. ๐๐๐๐ ๐๐ = ๐. ๐๐๐๐ ๐๐ = ๐. ๐๐๐๐ ๐๐ = ๐๐ = ๐. ๐๐๐๐ ๐ฒ = ๐. ๐ ๐ Free-parameters: , , , ๐ ๐ Model 11 ๐๐ฟ ๐, ๐ 1 โ ๐ฆ ๐1 โ ๐2 โ ๐ฆ ๐พ1 โ ๐พ2 Model 2 ๐๐ฟ ๐, ๐ 1 โ ๐ฆ ๐1 โ ๐2 + ๐พ15 โ ๐พ25 โ ๐ฆ ๐พ1 โ ๐พ2 HUGS, JLab, USA ๐ June, 2015 Sofia Leitão ๐ 10 1CSE fit to quarkonia and heavy-light pseudoscalar states Model 11 ๐ = ๐. ๐๐ ๐ฎ๐๐ฝ๐ , ๐ถ = ๐. ๐๐, ๐ช = ๐. ๐๐๐๐ฎ๐๐ฝ, ๐ = ๐. ๐๐ × ๐๐โ๐ ๐ = ๐. ๐๐ ๐ฎ๐๐ฝ๐ , ๐ถ = ๐. ๐๐, ๐ช = ๐. ๐๐๐ ๐ฎ๐๐ฝ, ๐ = ๐. ๐๐ × ๐๐โ๐ Model 2 ๏ง the linear confining interaction is compatible with y = 0 โ suggests vector component suppressed ๏ง not very sensitive to the choice scalar vs scalar-plus-pseudoscalar structure ๏ง for systems with larger ๐ the predictions are worse โ can be explained by the pole behavior HUGS, JLab, USA June, 2015 Sofia Leitão 11 Summary and Outlook 1. 2. We have solved the 1CS equation Based on these early results, we can already state that: CST is a promising covariant, Minkowski space approach to study the mesonic also the bound-state problem. ๏ผ Extend the fit to all other mesons (vector mesons, etc...) ๏ผ Remake the ๏ฌts using full, self-consistent ๐๐ 1CS ๐๐ โ ๐ด๐ ๐๐ = ๐๐๐ + ๐ฎ๐ ๐๐ ๏ง Solve the 2CS and 4CS using the numerical techniques developed โ light sector (pion) ๏ง Recalculate the pion form factor E. Biernat, F. Gross, M.T. Peña, A. Stadler, PRD89, 016005 (2014), PRD89, 016006 (2014) ๏ง Calculate quark-photon vertex dynamically HUGS, JLab, USA June, 2015 Sofia Leitão 12 Backup slides Subtraction Technique ๏ง Kernel in momentum space - singularities both in linear and OGE pieces โ First treatment in the nonrelativistic limit because singularities have the same nature Example Nonrelativistic, unscreened limit of 1CSE with just a linear potential: s-wave ๐2 ๐2 ๐ ๐ + ๐ซโซ ๐๐ ๐โ๐ ๐๐ด ๐โ๐ ๐โ๐ ๐ โ ๐00 ๐๐ด ๐00 ๐โ๐ ๐ 2๐๐ โ๐ 2๐ 3 2๐โ (๐ฆ) ๐โ๐ ๐๐ด ๐โ๐ = 2๐(โ8๐๐) ๐2 โ ๐ 2 2 ๏ง For โ > 1: 2 โฒ ๐โฒโ ๐ฆ ๐+๐ 2๐คโโ1 (๐ฆ) + 2 โ 2๐ ๐ 2 ๐๐ ๐ โ ๐ 2๐๐ 2 1 singularities ๐=๐ ๐2 + ๐ 2 ๐ฆ= 2๐๐ โ โฒ ๐คโโ1 ๐ฆ = ๐=1 1 ๐ ๐ฆ ๐๐โ1 (๐ฆ) ๐ โโ๐ โ ๐0 (๐ฆ) ๐ 2 1 Add and subtract a term proportional to ๐ซ ๐๐ = , ๐ 2 0 we can get rid of the logarithmic singularity. HUGS, JLab, USA = ๐ธ๐โ๐ ๐ June, 2015 Spence, Vary, PRD35, 2191 (1987) Gross, Milana, PRD43, 2401 (1991) Maung, Kahana, Norbury, PRD47,1182 (1993) Sofia Leitão โ 2 Apply now a second subtraction based on we can also remove the principal value singularity. ๐ซ 0 ๐๐ = 0, 2 2 ๐ โ๐ Singularity-free two-body equation New technique SL, A.Stadler, E.Biernat, M.T. Peña; PRD90, 096003 (2014) Before subtraction After subtraction ๏ผ Cubic B-splines ๏ผ More stable results than the un-subtracted version for any partial wave; ๏ผ Less computational time โ Back to the 1CSE: This technique was very important for stability purposes! HUGS, JLab, USA June, 2015 All singularities are eliminated from the kernel! Sofia Leitão Heavy-light scenario ๏ง With retardation we need to include a PauliVillars regularization, cut-off ๐ฒ Light-light scenario ๐๐ = ๐. ๐๐๐ ๐ฎ๐๐ฝ ๐๐ = ๐. ๐๐๐ ๐ฎ๐๐ฝ ๐ฒ = ๐. ๐ ๐ฎ๐๐ฝ ๐๐ = ๐ ๐๐ ๐๐ = ๐. ๐๐๐ ๐ฎ๐๐ฝ ๐ฒ = ๐. ๐ ๐ฎ๐๐ฝ without retardation with retardation Heavy-heavy scenario without retardation with retardation ๐๐ = ๐. ๐ ๐ฎ๐๐ฝ ๐๐ = ๐. ๐ ๐ฎ๐๐ฝ ๐ฒ = ๐๐. ๐ ๐ฎ๐๐ฝ ๏ผ ๐๐ light: large retardation effects ๏ผ nonrelativistic limit: retardation vanishes HUGS, JLab, USA June, 2015 without retardation with retardation Sofia Leitão SL, A.Stadler, E.Biernat, M.T. Peña; Phys. Rev. D90, 096003 (2014) NR 1CSE ๐ = ๐. ๐๐๐ ๐ฎ๐๐ฝ๐ , ๐ถ = ๐. ๐๐๐๐, ๐ช = ๐. ๐ ๐ฎ๐๐ฝ, Model 11 ๐ = ๐. ๐๐ ๐ฎ๐๐ฝ๐ , ๐ถ = ๐. ๐๐, ๐ช = ๐. ๐๐๐๐ฎ๐๐ฝ, ๐ = ๐. ๐๐ × ๐๐โ๐ Model 2 ๐ = ๐. ๐๐ ๐ฎ๐๐ฝ๐ , ๐ถ = ๐. ๐๐, ๐ช = ๐. ๐๐๐ ๐ฎ๐๐ฝ, ๐ = ๐. ๐๐ × ๐๐โ๐ HUGS, JLab, USA June, 2015 ๐๐ = ๐. ๐๐๐๐๐ฎ๐๐ฝ Sofia Leitão First energy state (positive component) 1CSE Results ๐1โ (๐) ๐ฌ๐+ = ๐. ๐๐๐๐ ๐ฎ๐๐ฝ ๐1+ (๐) First energy state (negative component) ๐1+ (๐) ๐ฌ๐โ = โ๐. ๐๐๐๐ ๐ฎ๐๐ฝ ๐1โ (๐) Parameters used: y = 0 (pure scalar) ๐ = 0.2๐บ๐๐ 2 (linear piece) ๐2 = 0.325 ๐บ๐๐ ๐1 / ๐2 =5 HUGS, JLab, USA June, 2015 ๏ผ Perfect agreement with previous results โ faster convergence M. Uzzo, F. Gross, PRC59, 1009 (1999) Sofia Leitão
© Copyright 2026 Paperzz