Quarkonia and heavy light mesons in a covariant quark model

Quarkonia and heavy-light mesons in a covariant
quark model
Sofia Leitão
CFTP, University of Lisbon, Portugal
in collaboration with:
Alfred Stadler, M. T. Peña and Elmar P. Biernat
HUGS, JLab, USA
June, 2015
Sofia Leitão
A unified model for all ๐‘ž ๐‘ž mesons
Much important work was done on meson structure:
๏‚ง Cornell-type potential models (Isgur and Godfrey, Spence and Vary, etc.)
But: nonrelativistic (or โ€œrelativizedโ€); structure of constituent quark and relation to
existence of zero-mass pion in chiral limit not addressed
๏‚ง Dyson-Schwinger approach (C. Roberts et al.)
But: Euclidean space; only Lorentz vector confining interaction
๏‚ง Lattice QCD (also Euclidean space), EFT, Bethe-Salpeter, Light-front, Point-form, โ€ฆ
Our objectives:
๏‚ง Construct a model to describe all ๐‘ž ๐‘ž-type mesons
๏‚ง Covariant framework (CST) - light quarks require relativistic treatment
Work in Minkowski space (physical momenta)
๏‚ง Quark self-energy from ๐‘ž ๐‘ž interaction kernel (consistent quark mass function)
๏‚ง Chiral symmetry: massless pion in chiral limit of vanishing bare quark mass
๏‚ง Calculate meson spectrum and bound state vertex functions (wave functions)
๏‚ง Pion elastic and transition form factors
๏‚ง Learn about confining interaction (scalar vs. vector, etc.)
HUGS, JLab, USA
June, 2015
Sofia Leitão
2
CST main idea
interaction kernel
๐‘€
scattering problem
๐œˆ
=
+ ๐œˆ
scattering amplitude
๐‘€
๏‚ง If kernel ๐’ฑ = โˆ‘ (all 1PI diagrams) โ†’
exact result for ๐‘€
๏‚ง Usual truncation: ladder approximation
๏‚ง Cancelation theorem: ๐œ™ 3 - theory
2
1
+
=
[F.Gross, PR186, 1969]
[F.Gross, Relativistic Quantum Mechanics and Field Theory, 2004]
cancellation in all orders and exact in heavy-mass limit !
x
particle 1 on mass-shell: ๐‘˜12 = ๐‘š12
A โ€œgood wayโ€ to sum the contribution of all ladder + crossed ladder diagrams is to use the
approximation of just 1 ladder diagram with the one particle on its mass-shell.
HUGS, JLab, USA
June, 2015
Sofia Leitão
3
Covariant two-body bound-state equation
Start from the Bethe-Salpeter (BS) equation
๐‘‘4๐‘˜
ฮ“๐ต๐‘† ๐‘, ๐‘ƒ = ๐‘–
๐’ฑ ๐‘, ๐‘˜; ๐‘ƒ ๐‘†1 (๐‘˜1 )ฮ“๐ต๐‘† ๐‘˜, ๐‘ƒ ๐‘†2 (๐‘˜2 )
4
2๐œ‹
1
๐›ด๐‘– ๐‘˜๐‘– = ๐ด๐‘– ๐‘˜๐‘–2 + ๐‘˜๐‘– ๐ต๐‘– (๐‘˜๐‘–2 )
๐‘†๐‘– ๐‘˜๐‘– =
๐‘š0๐‘– โˆ’ ๐‘˜๐‘– + ฮฃ๐‘– ๐‘˜๐‘– โˆ’ ๐‘–๐œ–
๐‘ƒ = ๐‘˜1 โˆ’ ๐‘˜2
๐‘˜ = ๐‘˜1 + ๐‘˜2 /2
ฮ“ ๐‘˜, ๐‘ƒ or ฮ“(๐‘˜1 , ๐‘˜2 )
๐’ฑ ๐‘, ๐‘˜
total momentum
relative momentum
vertex function
kernel
Kernel contains confining interaction + color Coulomb +/or constant
In the BS equation it is effectively iterated to all orders
But the complete kernel is a sum of an infinite number of irreducible diagrams
โ†’ has to be truncated (most often: ladder approximation)
Now we take a closer look at the loop integration over ๐‘˜0
HUGS, JLab, USA
June, 2015
Sofia Leitão
4
From Bethe-Salpeter to CST
Covariant Spectator Theory (CST)
Mini-review: A.Stadler, F. Gross, Few-Body Syst. 49, 91 (2010)
Integration over relative energy ๐‘˜0 :
๏‚ง Keep only pole contributions from propagators
๏‚ง Cancellations between ladder and crossed
ladder diagrams can occur
๏‚ง Reduction to 3D loop integrations, but covariant
๏‚ง Works very well in few-nucleon systems
If bound-state mass ๐œ‡ is small:
both poles are close together (both important)
Symmetrize pole contributions from both half planes:
resulting equation is symmetric under charge conjugation
HUGS, JLab, USA
June, 2015
Sofia Leitão
5
Four-channel CST equation
Closed set of equations when external legs are systematically placed on-shell
Approximations can be made for special cases:
๏‚ง mesons with different quark constituent masses: 2 channels
๏‚ง large bound-state mass: 1 channel
Nonrelativistic limit: Schrödinger equation
HUGS, JLab, USA
June, 2015
Sofia Leitão
6
CST bound-state (cont.)
2CS
Dominant pole!
1CS
Why to study such an equation?
๐’ฑ
๏‚ง prepare and test the numerics
๏‚ง test already our phenomenological choice for ๐’ฑ
๏‚ง should be a good approach to large ๐œ‡ systems:
Quarkonia (๐‘„๐‘„) and heavy-light (๐‘„๐‘ž)
HUGS, JLab, USA
June, 2015
Sofia Leitão
7
Interaction kernel
๏‚ง The 1CS eq. reads:
ฮ“1๐ถ๐‘†
๐‘‘3 ๐‘˜
๐‘, ๐‘ƒ = โˆ’โˆซ
2๐ธ๐‘˜1 2๐œ‹
3๐’ฑ
๐‘, ๐‘˜; ๐‘ƒ ฮ›1 ๐‘˜1 ฮ“1๐ถ๐‘† ๐‘˜, ๐‘ƒ ๐‘†2 ๐‘˜2 ,
๐‘†2 ๐‘˜2 =
๏‚ง Vertex function for a pseudoscalar meson:
1
๐‘š02 + ฮฃ2 ๐‘˜2 โˆ’ ๐‘˜2 + โˆ’๐‘–๐œ–
,
๐’Ž๐Ÿ
ฮ“ ๐‘ = ฮ“1 ๐‘ ๐›พ 5 + ฮ“2 ๐‘ ๐›พ 5 ๐‘š2 โˆ’ ๐‘2 , the most general form for CST.
๏‚ง Interquark interaction (phenomenological)
๐’ฑ ๐‘, ๐‘˜ = ๐ˆ ๐‘‰๐ฟ ๐‘, ๐‘˜
1 โˆ’ ๐’š ๐•1 โŠ— ๐•2 โˆ’ ๐’š
๐œ‡
๐›พ1
โŠ—
๐œ‡
๐›พ2
+ ๐œถ ๐‘‰๐‘‚๐บ๐ธ ๐‘, ๐‘˜
correct nonrelativictic limit for arbitrary ๐‘ฆ
๐œ‡
๐œ‡
1 โˆ’ ๐’š ๐•1 โŠ— ๐•2 + ๐›พ15 โŠ— ๐›พ25 โˆ’ ๐’š ๐›พ1 โŠ— ๐›พ2
HUGS, JLab, USA
June, 2015
๐œ‡
โŠ— ๐›พ2
๐›ฟ 3 (๐’‘ โˆ’ ๐’Œ) ๐œ‡
๐œ‡
+ ๐‘ช
๐›พ1 โŠ— ๐›พ2
2๐ธ๐‘˜1
One-gluon-exchange (OGE)
Linear confinement
๐‘‰๐ฟ ๐‘, ๐‘˜
๐œ‡
๐›พ1
Sofia Leitão
Constant
CST ๐œ‹๐œ‹- scattering studies constraints - Lorentz structure
8
Linear confinement in momentum space
SL, A. Stadler, E. Biernat, M.T. Peña; PRD90, 096003 (2014)
Nonrelativistic case
๐‘‰๐ฟ ๐’“ = ๐œŽ๐‘Ÿ
๐‘‰๐ฟ,๐œ– ๐’“ =
๐œŽ
1 โˆ’ ๐‘’ โˆ’๐œ–๐‘Ÿ
๐œ–
equiv.
๐œŽ
๐‘‰๐ฟ,๐œ– ๐’“ = ๐‘‰๐ด,๐œ– ๐’“ โˆ’ ๐‘‰๐ด,๐œ– (0), with ๐‘‰๐ด,๐œ– ๐’“ โ‰ก โˆ’ ๐‘’ โˆ’๐œ–๐‘Ÿ
๐œ–
Fourier Transform
๐‘‰๐ฟ,๐œ– ๐’‘, ๐’Œ = ๐‘‰๐ด,๐œ– ๐’’ โˆ’ 2๐œ‹ 3 ๐›ฟ (3)
๐‘‘ 3 ๐‘žโ€ฒ
๐’’ โˆซ
๐‘‰๐ด,๐œ– ๐’’โ€ฒ lim ๐œ– โ†’ 0 ๐‘‰๐ฟ ๐’‘, ๐’Œ = ๐‘‰๐ด ๐’’ โˆ’ 2๐œ‹ 3 ๐›ฟ
3
2๐œ‹
3
๐‘‘3๐‘žโ€ฒ
๐’’ โˆซ
๐‘‰๐ด ๐’’โ€ฒ ,
3
2๐œ‹
๐‘‰๐ด ๐’’ โ‰ก โˆ’
Relativistic case
๐‘‰๐ฟ ๐‘, ๐‘˜ = ๐‘‰๐ด ๐‘, ๐‘˜ โˆ’ 2๐ธ๐‘1 2๐œ‹ 3 ๐›ฟ
3
๐’‘โˆ’๐’Œ
๐‘‘ 3 ๐’Œโ€ฒ
โ€ฒ
๐‘‰
๐‘,
๐‘˜
๐ด
2๐œ‹ 3 2๐ธ๐‘˜1โ€ฒ
๐‘‰๐ด ๐‘, ๐‘˜ = โˆ’
8๐œ‹๐œŽ
๐’’๐Ÿ’
8๐œ‹๐œŽ
๐‘โˆ’๐‘˜
4
๏ƒผ Covariant;
๏ƒผ
๐‘‘3๐’Œ
โˆซ 2๐ธ ๐‘‰๐ฟ
๐‘˜1
๐‘, ๐‘˜ = 0;
๏ƒผ nonrelativistic limit:
HUGS, JLab, USA
necessary to prove chiral symmetry
3
lim โˆซ ๐‘‘ ๐’Œ ๐‘‰๐ฟ,๐œ– ๐’‘ โˆ’ ๐’Œ ๐œ“ ๐’Œ = ๐‘ƒโˆซ
๐œ–โ†’0
June, 2015
Sofia Leitão
๐‘‘3๐‘˜
๐’‘โˆ’๐’Œ 4
๐œ“ ๐’Œ โˆ’๐œ“ ๐’‘
well-defined
integral as a
Cauchy
Principal Value
integral
9
Input:
๐’Ž๐’ƒ = ๐Ÿ’. ๐Ÿ•๐Ÿ—๐Ÿ‘๐Ÿ
๐’Ž๐’„ = ๐Ÿ. ๐Ÿ“๐Ÿ‘๐ŸŽ๐ŸŽ
๐’Ž๐’” = ๐ŸŽ. ๐Ÿ’๐ŸŽ๐ŸŽ๐ŸŽ
๐’Ž๐’– = ๐’Ž๐’… = ๐ŸŽ. ๐Ÿ๐Ÿ“๐Ÿ–๐ŸŽ
๐šฒ = ๐Ÿ. ๐Ÿ• ๐’Ž
Free-parameters:
, , ,
๐œ‡
๐œ‡
Model 11
๐‘‰๐ฟ ๐‘, ๐‘˜
1 โˆ’ ๐‘ฆ ๐•1 โŠ— ๐•2 โˆ’ ๐‘ฆ ๐›พ1 โŠ— ๐›พ2
Model 2
๐‘‰๐ฟ ๐‘, ๐‘˜
1 โˆ’ ๐‘ฆ ๐•1 โŠ— ๐•2 + ๐›พ15 โŠ— ๐›พ25 โˆ’ ๐‘ฆ ๐›พ1 โŠ— ๐›พ2
HUGS, JLab, USA
๐œ‡
June, 2015
Sofia Leitão
๐œ‡
10
1CSE fit to quarkonia and heavy-light pseudoscalar states
Model 11 ๐ˆ = ๐ŸŽ. ๐Ÿ๐Ÿ ๐‘ฎ๐’†๐‘ฝ๐Ÿ ,
๐œถ = ๐ŸŽ. ๐Ÿ‘๐Ÿ–,
๐‘ช = ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ•๐‘ฎ๐’†๐‘ฝ,
๐’š = ๐Ÿ–. ๐Ÿ”๐ŸŽ × ๐Ÿ๐ŸŽโˆ’๐Ÿ•
๐ˆ = ๐ŸŽ. ๐Ÿ๐Ÿ ๐‘ฎ๐’†๐‘ฝ๐Ÿ ,
๐œถ = ๐ŸŽ. ๐Ÿ‘๐Ÿ•,
๐‘ช = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ ๐‘ฎ๐’†๐‘ฝ,
๐’š = ๐ŸŽ. ๐Ÿ‘๐Ÿ– × ๐Ÿ๐ŸŽโˆ’๐Ÿ•
Model 2
๏‚ง the linear confining interaction is compatible with y = 0
โ†’ suggests vector component suppressed
๏‚ง not very sensitive to the choice scalar vs scalar-plus-pseudoscalar structure
๏‚ง for systems with larger ๐œ‡ the predictions are worse
โ†’ can be explained by the pole behavior
HUGS, JLab, USA
June, 2015
Sofia Leitão
11
Summary and Outlook
1.
2.
We have solved the 1CS equation
Based on these early results, we can already state
that:
CST is a promising covariant, Minkowski space
approach to study the mesonic also
the bound-state problem.
๏ƒผ Extend the fit to all other mesons (vector mesons, etc...)
๏ƒผ Remake the ๏ฌts using full, self-consistent ๐’’๐’’ 1CS
๐’Ž๐Ÿ โ†’ ๐‘ด๐Ÿ ๐’Œ๐Ÿ = ๐’Ž๐ŸŽ๐Ÿ + ๐œฎ๐Ÿ ๐’Œ๐Ÿ
๏‚ง Solve the 2CS and 4CS using the numerical techniques developed โ€“ light sector (pion)
๏‚ง Recalculate the pion form factor
E. Biernat, F. Gross, M.T. Peña, A. Stadler, PRD89, 016005 (2014), PRD89, 016006 (2014)
๏‚ง Calculate quark-photon vertex dynamically
HUGS, JLab, USA
June, 2015
Sofia Leitão
12
Backup slides
Subtraction Technique
๏‚ง Kernel in momentum space - singularities both in linear and OGE pieces
โ†’ First treatment in the nonrelativistic limit because singularities have the same nature
Example
Nonrelativistic, unscreened limit of 1CSE with just a linear potential:
s-wave
๐‘2
๐‘˜2
๐œ“
๐‘ + ๐’ซโˆซ ๐‘‘๐‘˜
๐‘โ„“๐‘š ๐‘‰๐ด ๐‘˜โ„“๐‘š ๐œ“โ„“๐‘š ๐‘˜ โˆ’ ๐‘00 ๐‘‰๐ด ๐‘˜00 ๐œ“โ„“๐‘š ๐‘
2๐‘š๐‘… โ„“๐‘š
2๐œ‹ 3
2๐‘ƒโ„“ (๐‘ฆ)
๐‘โ„“๐‘š ๐‘‰๐ด ๐‘˜โ„“๐‘š = 2๐œ‹(โˆ’8๐œ‹๐œŽ)
๐‘2 โˆ’ ๐‘˜ 2
2
๏‚ง For โ„“ > 1:
2
โ€ฒ
๐‘ƒโ€ฒโ„“ ๐‘ฆ
๐‘+๐‘˜
2๐‘คโ„“โˆ’1
(๐‘ฆ)
+
2 โˆ’ 2๐‘ ๐‘˜ 2 ๐‘™๐‘› ๐‘ โˆ’ ๐‘˜
2๐‘๐‘˜ 2
1 singularities
๐’‘=๐’Œ
๐‘2 + ๐‘˜ 2
๐‘ฆ=
2๐‘๐‘˜
โ„“
โ€ฒ
๐‘คโ„“โˆ’1
๐‘ฆ =
๐‘š=1
1
๐‘ƒ
๐‘ฆ ๐‘ƒ๐‘šโˆ’1 (๐‘ฆ)
๐‘š โ„“โˆ’๐‘š
โˆž
๐‘„0 (๐‘ฆ) ๐œ‹ 2
1 Add and subtract a term proportional to ๐’ซ ๐‘‘๐‘˜
=
,
๐‘˜
2
0
we can get rid of the logarithmic singularity.
HUGS, JLab, USA
= ๐ธ๐œ“โ„“๐‘š ๐‘
June, 2015
Spence, Vary, PRD35, 2191 (1987)
Gross, Milana, PRD43, 2401 (1991)
Maung, Kahana, Norbury, PRD47,1182 (1993)
Sofia Leitão
โˆž
2 Apply now a second subtraction based on we
can also remove the principal value singularity.
๐’ซ
0
๐‘‘๐‘˜
= 0,
2
2
๐‘˜ โˆ’๐‘
Singularity-free two-body equation
New technique
SL, A.Stadler, E.Biernat, M.T. Peña;
PRD90, 096003 (2014)
Before subtraction
After subtraction
๏ƒผ Cubic B-splines
๏ƒผ More stable results than the un-subtracted version for any partial wave;
๏ƒผ Less computational time
โ†’ Back to the 1CSE:
This technique was very important for stability
purposes!
HUGS, JLab, USA
June, 2015
All singularities are
eliminated from the
kernel!
Sofia Leitão
Heavy-light scenario
๏‚ง With retardation we need to include a PauliVillars regularization, cut-off ๐šฒ
Light-light scenario
๐’Ž๐Ÿ = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ“ ๐‘ฎ๐’†๐‘ฝ
๐’Ž๐Ÿ = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ“ ๐‘ฎ๐’†๐‘ฝ
๐šฒ = ๐Ÿ‘. ๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
๐’Ž๐Ÿ = ๐Ÿ“ ๐’Ž๐Ÿ
๐’Ž๐Ÿ = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ“ ๐‘ฎ๐’†๐‘ฝ
๐šฒ = ๐Ÿ‘. ๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
without retardation
with retardation
Heavy-heavy scenario
without retardation
with retardation
๐’Ž๐Ÿ = ๐Ÿ’. ๐Ÿ– ๐‘ฎ๐’†๐‘ฝ
๐’Ž๐Ÿ = ๐Ÿ’. ๐Ÿ– ๐‘ฎ๐’†๐‘ฝ
๐šฒ = ๐Ÿ๐ŸŽ. ๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
๏ƒผ ๐‘ž๐‘ž light: large retardation effects
๏ƒผ nonrelativistic limit: retardation vanishes
HUGS, JLab, USA
June, 2015
without retardation
with retardation
Sofia Leitão
SL, A.Stadler, E.Biernat, M.T. Peña; Phys. Rev. D90, 096003 (2014)
NR 1CSE
๐ˆ = ๐ŸŽ. ๐Ÿ๐Ÿ”๐Ÿ• ๐‘ฎ๐’†๐‘ฝ๐Ÿ ,
๐œถ = ๐ŸŽ. ๐Ÿ“๐Ÿ๐Ÿ”๐Ÿ•,
๐‘ช = ๐ŸŽ. ๐ŸŽ ๐‘ฎ๐’†๐‘ฝ,
Model 11
๐ˆ = ๐ŸŽ. ๐Ÿ๐Ÿ ๐‘ฎ๐’†๐‘ฝ๐Ÿ ,
๐œถ = ๐ŸŽ. ๐Ÿ‘๐Ÿ–,
๐‘ช = ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ•๐‘ฎ๐’†๐‘ฝ,
๐’š = ๐Ÿ–. ๐Ÿ”๐ŸŽ × ๐Ÿ๐ŸŽโˆ’๐Ÿ•
Model 2
๐ˆ = ๐ŸŽ. ๐Ÿ๐Ÿ ๐‘ฎ๐’†๐‘ฝ๐Ÿ ,
๐œถ = ๐ŸŽ. ๐Ÿ‘๐Ÿ•,
๐‘ช = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ ๐‘ฎ๐’†๐‘ฝ,
๐’š = ๐ŸŽ. ๐Ÿ‘๐Ÿ– × ๐Ÿ๐ŸŽโˆ’๐Ÿ•
HUGS, JLab, USA
June, 2015
๐’Ž๐’ƒ = ๐Ÿ’. ๐Ÿ•๐Ÿ—๐Ÿ‘๐Ÿ๐‘ฎ๐’†๐‘ฝ
Sofia Leitão
First energy state (positive component)
1CSE Results
๐œ“1โˆ’ (๐‘)
๐‘ฌ๐Ÿ+ = ๐ŸŽ. ๐Ÿ—๐Ÿ‘๐Ÿ–๐Ÿ• ๐‘ฎ๐’†๐‘ฝ
๐œ“1+ (๐‘)
First energy state (negative component)
๐œ“1+ (๐‘)
๐‘ฌ๐Ÿโˆ’ = โˆ’๐ŸŽ. ๐Ÿ—๐Ÿ‘๐Ÿ”๐Ÿ‘ ๐‘ฎ๐’†๐‘ฝ
๐œ“1โˆ’ (๐‘)
Parameters used: y = 0 (pure scalar) ๐œŽ = 0.2๐บ๐‘’๐‘‰ 2 (linear piece)
๐‘š2 = 0.325 ๐บ๐‘’๐‘‰
๐‘š1 / ๐‘š2 =5
HUGS, JLab, USA
June, 2015
๏ƒผ Perfect agreement with previous
results โ€“ faster convergence
M. Uzzo, F. Gross, PRC59, 1009 (1999)
Sofia Leitão