Chapter 2 Time-Independent Schrödinger Equation 2.1 Particle in a time-independent scalar potential • Schrödinger equation: ( x, t ) 2 2 ( x, t ) i V ( x ) ( x, t ) 2 t 2m x • Separating variables: ( x, t ) ( x) (t ) d (t ) 2 d 2 ( x) i ( x) (t ) V ( x) ( x) (t ) 2 dt 2m dx i d (t ) 2 d 2 ( x) V ( x) 2 (t ) dt 2m ( x) dx 2.1 Particle in a time-independent scalar potential 2 2 i d (t ) d ( x) V ( x) 2 (t ) dt 2m ( x) dx d (t ) i (t ) dt (t ) eit 2 d 2 ( x) V ( x) ( x) ( x) 2 2m dx ( x, t ) ( x) (t ) ( x)e it • This is called a stationary solution for a stationary eigenstate E ( x, t ) ( x ) 2 2 2.1 Particle in a time-independent scalar potential 2 2 d ( x) V ( x) ( x) E ( x) 2 2m dx • For the Hamiltonian, a linear differential operator: 2 2 Hˆ V ( x) 2 2m x Hˆ ( x, t ) E ( x, t ) • This is an eigenvalue equation for H Hˆ n ( x) En n ( x) n ( x, t ) n ( x)e iEn t / • Linear superposition of solutions is a solution ( x, t ) cn n ( x)e n iEn t / ( x,0) cn n ( x) n 2.1 Particle in a time-independent scalar potential • Calculating expectation values: Hˆ * ˆ Hdx 2 * ˆ 2 ˆ H H dx ˆ dx E 2 Ĥ E dx E H * Hˆ 2 H * * E dx E dx E 2 Hˆ * 2 0 • The distribution of energy values in a given stationary state has zero spread • Measurements of an energy eigenvalue are certain to return the given eigenvalue En 2.2 Particle in a 1D infinite square well • Let us assume: 0 V ( x) 0 xa x 0; x a • Outside of the well: ( x) 0 2 2 d ( x) • Inside of the well: E ( x) 2 2m dx d 2 ( x) 2mE 2 ( x) 2 dx • Denoting: k 2mE d 2 ( x) 2 k ( x) 2 dx 2.2 Particle in a 1D infinite square well • Solution: ( x) A sin kx B cos kx • Continuity condition: (0) (a) 0 Asin 0 B cos 0 B 0 n n ( x) An sin x ( x) A sin kx • And: a (a) A sin ka 0 n n 1;2;3... kn ka 0; ;2 ;3 ... n a n 1;2;3... d 2 ( x) 2 k ( x) 2 dx • Therefore: 2.2 Particle in a 1D infinite square well • Normalizing: a 0 a ( x) dx An 2 n 0 • Recall: x sin 2bx sin bxdx 2 4b 2 a 0 2 n sin xdx 1 a 2 An 2 2 a n n ( x) An sin x • Therefore: a a 2n 2 a 2 2 A sin x n An a An x 2 2 n a 1 An sin xdx n 2 a 2 4 0 a 0 2.2 Particle in a 1D infinite square well • Solution: 2 n n ( x) sin x a a • Recall: k 2mE n kn a • Therefore: 2 k n2 2 n 2 2 En 2m 2ma 2 An 2 2 a n n ( x) An sin x a 2.2 Particle in a 1D infinite square well 2 2 2 sin x • Ground state: 1 ( x) E1 2 a • Excited states: n 1 a 2 n n ( x) sin x a a 2ma n 2 2 2 En 2ma 2 2.2 Particle in a 1D infinite square well • Properties of eigenstates: • 1) They are alternately even and odd • 2) They have n – 1 nodes • 3) They are orthogonal: m * ( x) n ( x)dx mn mn 0 m n 1 m n 2.2 Particle in a 1D infinite square well mn • Proof of orthogonality: 2 m n m * ( x) n ( x)dx a sin a x sin a xdx 0 a 1 mn m n cos x cos x dx a0 a a a 1 1 mn m n sin x sin x a (m n) a 0 (m n) a 1 sin m n sin m n 0 ( m n) ( m n) cos( y z ) cos( y z ) sin y sin z 2 2.2 Particle in a 1D infinite square well • Properties of eigenstates: • 1) They are alternately even and odd • 2) They have n – 1 nodes • 3) They are orthogonal: • 4) They are complete: f ( x) cn n ( x) n 1 2 n cn sin x a n 1 a 2.2 Particle in a 1D infinite square well • Proof of completeness: f ( x) cn n ( x) n 1 m * ( x) f ( x) m * ( x) cn n ( x) n 1 * ( x) f ( x)dx cn m * ( x) n ( x)dx m n 1 m * ( x) f ( x)dx cn m * ( x) n ( x)dx n 1 m * ( x) f ( x)dx cn mn cm n 1 cn n * ( x) f ( x)dx 2.2 Particle in a 1D infinite square well • Recall expression for a stationary eigenstate: n ( x, t ) n ( x)e iEn t / • Stationary states of the 1D infinite square well: n 2 2 i 2 2 ma 2 n n ( x, t ) sin xe a a t • And the most general solution (spectral n 2 2 decomposition): t i ( x, t ) 2 n cn sin xe a n 1 a 2 ma 2 • Using completeness: ( x,0) cn n ( x) n 1 2 n cn sin x( x,0)dx a0 a a 2.2 Particle in a 1D infinite square well • Let us recall: ( x, t ) 2 dx 1 * iEmt / iEnt / 1 cm m ( x)e cn n ( x)e dx n1 m 1 iEm t / iEn t / cm * e cn e m * ( x) n ( x)dx m 1 n 1 cm * cn e i Em En t / m 1 n 1 m 2 c n 1 2 n 1 * ( x) n ( x)dx mn ( x,0) cn n ( x) n 1 mn cn n 1 ( x, t ) cn n ( x)e n iEn t / 2.2 Particle in a 1D infinite square well • We can also calculate: * Hˆ * ( x, t ) Hˆ ( x, t )dx iEmt / iEnt / ˆ cm m ( x)e H cn n ( x)e dx n1 m 1 iEm t / iEn t / ˆ ( x)dx cm * e cn e * ( x ) H n m m 1 n 1 iEm t / iEn t / m n n m i Em En t / m n n mn m 1 n 1 c * e m 1 n 1 ce E c * c E e Hˆ n En n m * ( x) n ( x)dx cn E n 2 n 1 * ( x) n ( x)dx mn ( x,0) cn n ( x) n 1 2 ˆ H cn E n n 1 ( x, t ) cn n ( x)e n iEn t / 2.2 Particle in a 1D infinite square well • Synopsizing: c m 1 2 n 1 2 ˆ H cn E n n 1 • |cn|2 can be interpreted as the probability of measuring the energy value En when the system is in the state described by the wave function Ψ(x,t) • Expectation value of the energy dos not depend on time – conservation of energy ( x, t ) cn n ( x)e n iEn t / 2.3 1D harmonic oscillator • Let us consider 1D system with a potential V(x) • This potential can be expanded in the vicinity of a local minimum: 2 1 dV V ( x) V ( x0 ) 2 2 dx 1 2 ( x x0 ) ... m 2 ( x x0 ) 2 2 x x0 • Then the QM Hamiltonian of the system will be: 2 ˆ p 1 2 2 ˆ H m xˆ 2m 2 2.3 1D harmonic oscillator • This Hamiltonian is time-independent, hence we get a conservative eigenvalue equation: Hˆ E 2 d 2 1 2 2 m x ( x) E ( x) 2 2 2m dx 2 ˆ p 1 2 2 ˆ H m xˆ 2m 2 2.3 1D harmonic oscillator • The Hamiltonian can be parametrized and made dimensionless by introducing operators m ˆ X xˆ • Then: Pˆ 1 pˆ m 2 ˆ p 1 ˆ H m 2 xˆ 2 2m 2 mPˆ 2 1 ˆ 2 ˆ 2 Ĥ 2 2 ˆ m X P X 2m 2 m 2 2 2 ˆ ˆ P X ˆ H 2 2.3 1D harmonic oscillator • Let’s introduce a definition of a commutator: • Then: [ Aˆ , Bˆ ] Aˆ Bˆ Bˆ Aˆ xˆf [ xˆ, pˆ ] f xˆpˆ pˆ xˆ f xˆpˆ f pˆ xˆf xpˆ f i x f f x f if x f xf x x i x i x i x i x i x [ xˆ , pˆ ] i • And: m 1 m 1 [ xˆ, pˆ ] [ Xˆ , Pˆ ] xˆ , pˆ m m 1 1 i i [ Xˆ , Pˆ ] i 2.3 1D harmonic oscillator • For the new dimensionless Hamiltonian the eigenvalue problem becomes Xˆ iPˆ Ĥ a 2 • Let us introduce the following operators ˆ ˆ X i P † † † a a i ( a a ) a ˆ • Then Xˆ P 2 2 2 • And Xˆ iPˆ Xˆ iPˆ † † [ a , a ] 1 [ a, a ] , 2 2 i ˆ ˆ 1 ˆ ˆ X , X iPˆ ,iPˆ Xˆ ,iPˆ iPˆ , Xˆ P, X Xˆ , Pˆ 2 2 i i i 1 2 2.3 1D harmonic oscillator Xˆ iPˆ Xˆ iPˆ • Also a a 2 2 ˆ iPˆ X 1 ˆ 2 ˆ2 a ˆ ˆ ˆ ˆ X P iXP iPX 2 2 ˆ ˆ 1 ˆ 2 ˆ2 1 X i P 2 2 X P i[ Xˆ , Pˆ ] Xˆ Pˆ i i a† 2 2 2 1 ˆ H 2 1 1 † ˆ ˆ • Therefore H a a N 2 2 1 † ˆ • It can be shown that H aa 2 † 2.3 Some properties • Commutators † † † † ˆ [ N , a] [a a, a] a aa aa a [a , a]a a † † † † † † † ˆ [ N , a ] [a a, a ] a aa a a a a † [a, a † ] a † [ Nˆ , a ] a [ Nˆ , a † ] a † • Also [ a, a † ] 1 aa † a † a 1 aa Nˆ 1 † 2.3 Some properties • Since Ĥ • One finds that 1 † † 1 † † † † ˆ Ha a a a a aa a 2 2 1 1 1 † † † ˆ a aa a H 2 2 2 † † † a†Hˆ a† a a ( 1)a Hˆ a† ( 1)a† 2.3 Some properties • Since Ĥ • One finds that † 1 1 † ˆ Ha aa a aa a a 2 2 1 1 1 † a a a a Ĥ 2 2 2 aĤ a a a ( 1)a Hˆ a ( 1)a 2.3 Some properties • Thereby: † † ˆ Ha ( 1)a Hˆ a ( 1)a • Because of this, operators a† and a are called ladder operators; a† – creation (raising) operator and a – destruction (lowering) operator 2.3 Some properties • Thereby: † † ˆ Ha ( 1)a Hˆ a ( 1)a • What happens if we apply the lowering operator repeatedly? • Will we reach energy less than zero? • So, does the ground state exist? • If it does, what is it’s eigenvalue and eigenvector? 2.3 Ground state • If the ground state exists then the following condition must be satisfied: a 0 0 • Does this equation have solutions? m 1 ˆ ˆ x i p Xˆ iPˆ m 0 0 0 2 2 m d • Explicitly: x 0 ( x) 0 dx • Solution: m 2 x m 0 ( x) e 2 1/ 4 2.3 Ground state m 2 x m 0 ( x) e 2 1/ 4 2.3 Ground state • Using the Schrödinger equation: 1 † a a 0 0 0 2 Hˆ 0 0 0 1 a a 0 0 0 0 2 † 1 0 2 • We found the ground state! • It is greater than zero! m 2 x m 0 ( x) e 2 1/ 4 E0 2 2.3 Excited states • We can generate the rest of the spectrum Hˆ a† ( 1)a† 1 † † ˆ Ha 0 1a 0 2 3 † † ˆ H a 1 1 a 1 2 n An (a † ) n 0 1 E n n 2 1 ˆ H 0 0 2 3 3 ˆ H 1 1 A1a † 0 2 2 5 5 ˆ H 2 2 A2 a † a † 0 2 2 1 Ĥ n n n 2 n 0,1,2,... 2.3 Excited states • We can generate the rest of the spectrum 1 † ˆ H a a 2 1 ˆ 1 N n n n 2 2 n An (a † ) n 0 1 E n n 2 Nˆ n n n 1 Ĥ n n n 2 n 0,1,2,... 2.3 Excited states • Some properties: d f * mx dx gdx 1 dg mxf * g f * dx dx 2m 1 df * gmxf * g dx dx 2m 1 2m Xˆ iPˆ a 2 † f * a † g dx Xˆ iPˆ a 2 Xˆ iPˆ † a 2 m 1 xˆ i pˆ m 2 m d x m dx 2 2.3 Excited states • Some properties: f * a † g dx Xˆ iPˆ a 2 Xˆ iPˆ † a 2 d f * mx dx gdx 1 dg mxf * g f * dx dx 2m 1 df * gmxf * g dx dx 2m 1 d g mx g f * dx af *gdx dx 2m 1 2m f * a † g dx af *gdx 2.3 Excited states • Some properties: f * a g dx af *gdx † • Similarly: f * ag dx a † f * gdx 2.3 Excited states † n A ( a ) 0 • Eigenfunctions can be normalized n n 1 A1a † 0 c1a † 0 1 * 1dx c1 2 c1 2 † † ( a ) * a 0 0 dx 0 * a(a 0 )dx c1 † 2 † * (( a a 1) 0 )dx 0 2 2 † c1 0 * (a a 0 )dx 0 *1 0 dx c1 (0 1) 2 c1 1 2.3 Excited states † n A ( a ) 0 • Eigenfunctions can be normalized n n n cn a † n 1 n * n dx cn 2 (a † n 1 ) * a n 1dx † † c * (( a a 1) n 1 )dx cn n 1 * a(a n 1 )dx n n1 2 ˆ cn n 1 * ( N n 1 )dx n 1 *1 n 1dx 2 2 1 2 cn (n 1) 1 cn n 1 cn n 1 † n 1 n An (a ) 0 (a † ) n 0 cn n! n 2 † 2 2.3 Excited states • Eigenfunctions are orthogonal * a a n dx n m * n dx (a m ) * a n dx † m (a † a m ) * n dx m m * n dx m * n dx mn 2.3 Eigenfunctions • The eigenfunctions can be written explicitly • Recall m 0 ( x) e 1/ 4 m 2 x 2 1 n (a † ) n 0 n! • The creation operator: a † m d x m dx 2 2.3 Eigenfunctions 1 † n n ( x) (a ) 0 • Therefore: n! n 1 1 m d 0 ( x) x m dx n! 2 n 1 m m d x e n 2 n! m dx n 1/ 4 • The creation operator: a † m d x m dx 2 n m 2 x 2 2.3 Eigenfunctions 1 † n n ( x) (a ) 0 • Therefore: n! n 1 1 m d 0 ( x) x m dx n! 2 n 1 m m d x e n 2 n! m dx n 1/ 4 n 3 1/ 4 m 2 4 m x 2 xe 1 ( x) 1/ 4 m 2 m m 2 2 x 2 ( x) x 1e 2 4 m 2 x 2 2.3 Eigenfunctions • We have explicit expressions for the eigenfunctions: n ( x) m 1 m m d 2 x 2 x e n 2 n! m dx n 1/ 4 n • They contain the Hermite polynomials n d x2 H n ( x) 1 e e dx n x2 • Their parity is (–1)n Charles Hermite (1822 – 1901) 2.3 Eigenfunctions • Graphically: 2.4 Free particle ( x, t ) 2 2 ( x, t ) i • For a free particle: t 2m x 2 2 2 2mE d ( x) • Eigenproblem: k E ( x ) 2 2 m dx 2 d ( x) 2 ikx ikx k ( x ) ( x ) Ae Be 2 dx • Stationary solution: ( x, t ) ( Ae Be ikx ikx )e iEt / Aeik ( x kt / 2 m ) Be ik ( x kt / 2 m ) • Normalizing: ( A* e k ik x t 2 m ( x, t ) B *e 2 dx k ik x t 2 m ( x, t ) * ( x, t )dx k ik x t 2 m )( Ae Be k ik x t 2 m ( A * A B * B AB * ei 2 kx A * Be i 2 kx )dx )dx 2.4 Free particle • The wave function is not normalizable! • What’s going on? • A free particle cannot exist in a stationary state • Free particle with a definite energy is not physical • Normalizing: ( A* e k ik x t 2 m ( x, t ) B *e 2 dx k ik x t 2 m ( x, t ) * ( x, t )dx k ik x t 2 m )( Ae Be k ik x t 2 m ( A * A B * B AB * ei 2 kx A * Be i 2 kx )dx )dx 2.4 Free particle • The linear combination of stationary states is a solution of the Schrödinger equation: 1 ( x, t ) 2 ( k )e 1 2 ( k )e ikx dk • And properties of Fourier transform: 1 1 ikx F (k ) f ( x) F (k )e dk 2 2 • One obtains: (k ) dk • Using initial condition: ( x,0) k ik x t 2m 1 2 f ( x)e ikx dx ikx ( x , 0 ) e dx 2.4 Wave packet • Wave packet: Re ( x) k k i k x i k (k0 ) ik0 x 1 0 2 1 0 2 x ( x,0) e e e 2 2 2 (k0 ) ik0 x k e 1 cos x 2 2 k xd 0 • Interference is destructive when 1 cos 2 k k xd x 2 xd kx 4 cos xd 1 2 2 2.4 Wave packet • More waves in a packet: 2.4 Wave packet • More waves in a packet: kx 1 2.4 Evolution of a free packet i ( kx t ) ( x , t ) Ae • For a single wave: 2 k • Phase velocity: v (k ) 2m k k v (k ) 2m • Three-wave packet: k k i k 0 x 0 t i k 0 x 0 (k0 ) i k0 x 0t 1 2 2 1 2 2 t e ( x, t ) e e 2 2 2 (k0 ) i k0 x 0t k e 1 cos 2 x 2 t 2 • Maximum occurs when: k cos xM t 1 2 2 k xM t 0 2 2 xM t k 2.4 Evolution of a free packet • For multiple waves in a packet : ( x, t ) • Group velocity: k 2 2m 1 2 i ( kx t ) ( k ) e dk d vG (k 0 ) dk k k0 k 2v (k0 ) vG (k0 ) m δ-function potential • δ-function: f ( x) x a dx f (a) 2.5 δ-function potential 2.5 • Schrödinger equation: ( x, t ) ( x, t ) i ( x) ( x, t ) 2 t 2m x 2 2 d ( x) • Eigenproblem: ( x) ( x) E ( x) 2 2m dx 2 2mE d ( x ) 2 • For x < 0: ( x) 2 dx x x x • Stationary solution: ( x) Ae Be Be 2 • Similarly, for x > 0: 2 ( x) Fex • From continuity condition BF Be x , ( x 0) ( x) x Be , ( x 0) δ-function potential 2.5 • Schrödinger equation: ( x, t ) ( x, t ) i ( x) ( x, t ) 2 t 2m x 2 2 d ( x) • Eigenproblem: ( x) ( x) E ( x) 2 2m dx 2 2 Be x , ( x 0) ( x) x Be , ( x 0) δ-function potential 2.5 • Schrödinger equation: ( x, t ) ( x, t ) i ( x) ( x, t ) 2 t 2m x 2 2 d ( x) • Eigenproblem: ( x) ( x) E ( x) 2 2m dx 2 2 • Integrating in the vicinity of 0: 2 d 2 ( x) lim dx ( x ) ( x ) dx E ( x ) dx 0 2 0 2m dx x d ( x) 2m Be , ( x 0) lim ( 0 ) 0 ( x) x 2 0 dx Be , ( x 0) 2.5 δ-function potential 2m 2m 2mE B ( B ) 2 B 0 2 2 m 2 2mE m 2 E 2 2 • Integrating in the vicinity of 0: 2 d 2 ( x) lim dx ( x ) ( x ) dx E ( x ) dx 0 2 0 2m dx x d ( x) 2m Be , ( x 0) lim ( 0 ) 0 ( x) x 2 0 dx Be , ( x 0) 2.5 δ-function potential 2m 2m 2mE B ( B ) 2 B 0 2 2 m 2 2mE • Normalizing: m 2 E 2 2 m ( x) e 1 ( x) dx 2 B 2 2 e 2x m 2 x dx 0 B B m Be x , ( x 0) ( x) x Be , ( x 0) 2 δ-function potential 2.5 • Schrödinger equation: ( x, t ) ( x, t ) i ( x) ( x, t ) 2 t 2m x 2 2 d ( x) • Eigenproblem: ( x) ( x) E ( x) 2 2m dx 2 2mE d ( x ) 2 • For x < 0: k k ( x) 2 dx ikx ikx • Stationary solution: ( x) Ae Be 2 • Similarly, for x > 0: 2 ( x) Feikx Geikx • From continuity condition A B F G δ-function potential • Integrating in the vicinity of 0: d ( x) 2m lim (0) 0 2 0 dx 2m ik ( F G A B) 2 ( A B) 2 2mE d ( x ) 2 • For x < 0: k k ( x) 2 dx ikx ikx • Stationary solution: ( x) Ae Be • Similarly, for x > 0: ( x) Feikx Geikx • From continuity condition A B F G 2.5 δ-function potential • Integrating in the vicinity of 0: d ( x) 2m lim (0) 0 2 0 dx 2m ik ( F G A B) 2 ( A B) F G A(1 2i ) B(1 2i ) • Assuming i B A 1 2i G0 1 F A 1 2i A B F G 2mE k m 2 k 2.5 δ-function potential • Reflection coefficient: 2 2 1 R 2 2 1 1 (2 2 E / m 2 ) A B • Transmission coefficient: F 2 1 1 T 2 2 2 2 1 1 (m / 2 E ) A R T 1 i B A 1 2i 1 F A 1 2i A B F G 2mE k m 2 k 2.5
© Copyright 2026 Paperzz