Overview of Supersymmetry and Dark Matter John Ellis King’s College London (& CERN) Strange Recipe for a Universe The ‘Standard Model’ of the Universe indicated by astrophysics and cosmology Relic Density Calculation • Freeze-out from thermal equilibrium • Typical annihilation cross section ~ 3 ✕ 10-26 cm2 • Lower if coannihilation with related particles 300,000 years Formation of atoms 3 minutes Formation of nuclei 1 microsecond Appearance 1 pico- of dark matter? second Formation of protons & neutrons Appearance Appearance of mass? of matter? Classic Dark Matter Signature Missing transverse energy carried away by dark matter particles What else is there? Supersymmetry • Successful prediction for Higgs mass – Should be < 130 GeV in simple models • Successful predictions for Higgs couplings – Should be within few % of SM values • Could explain the dark matter • Naturalness, GUTs, string, … (???) Higgs Bosons in Supersymmetry • Need 2 complex Higgs doublets (cancel anomalies, form of SUSY couplings) • 8 – 3 = 5 physical Higgs bosons Scalars h, H; pseudoscalar A; charged H± • Lightest Higgs < MZ at tree level: • Important radiative corrections to mass: ΔMH|TH ~ 1.5 GeV MSSM Higgs Masses & Couplings Lightest Higgs mass up to ~ 130 GeV Heavy Higgs masses quite close Consistent With LHC Supersymmetric Higgs Couplings • Very similar to those in the SM • Present data do not constrain supersymmetric models H to WW • Need future collider to distinguish Where May SUSY be Hiding? Excluded because stau or stop LSP Stop coannihilation strip Excluded by ATLAS Jest + MET search Excluded by b s γ, Bs μ+μRelic density constraint, assuming neutralino LSP JE, Olive & Zheng: arXiv:1404.5571 Stau coannihilation strip Data • Electroweak precision observables • Flavour physics observables Deviation from Standard Model: • gμ - 2 Supersymmetry at low scale, or …? • Higgs mass • Dark matter M = 125.6 ± 0.3 ± 1.5 GeV • LHC H MasterCode: O.Buchmueller, JE et al. O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M.J. Dolan, J.E., H. Flacher, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martinez Santos, S. Nakach, K.A. Olive, S. Rogerson, F.J. Ronga, K.J. de Vries, G. Weiglein Search with ~ 20/fb @ 8 TeV 2012 20/fb Scan of CMSSM Buchmueller, JE et al: arXiv:1312.5250 p-value of simple models ~ 5% (also SM) LHC Reach for Supersymmetry K. De Vries (MasterCode) Confronted with likelihood analysis of CMSSM 20121 Squark mass 520/fb Reach of LHC at High luminosity CMSSM Buchmueller, JE et al: arXiv:1312.5250 Favoured values of squark mass also significantly above pre-LHC, > 1.6 TeV 20121 Gluino mass 520/fb Reach of LHC at CMSSM High luminosity CMSSM Buchmueller, JE et al: arXiv:1312.5250 Favoured values of gluino mass significantly above pre-LHC, > 1.8 TeV Proton-Proton Colliders: Luminosity and Energy • Future runs of the LHC: – Run 2: 30/fb @ 13/14 TeV – Run 3: 300/fb @ 14 TeV • HL-LHC: 3000/fb @ 14 TeV? (proposed in CERN’s medium-term plan) • HE-LHC: 3000/fb @ 33 TeV?? (high-field magnets in the LHC tunnel) • VHE-LHC: 3000/fb @ 100 TeV?? (high-field magnets in 80/100 km tunnel) Exploring the Stau Coannihilation Strip • Disappearing tracks, missing-energy + jets, massive metastable charged particles Present sensitivity Desai, JE, Luo & Marrouche: arXiv:1404.5061 Present sensitivity Prospective sensitivity of LHC Run II What Parts of High-Mass Parameter Space are Allowed? 1 26 124 621 122 1000 3.2e−09 90−e2.3 2.3 90−e 120 .3 90−e2 100 0.0 O. Buchmueller, JE, K. Olive et al. 621 12 5 2000 m0 (GeV) 3.2e−09 m1/2 (GeV) 3000 3.2e−09 90− e2. 3 3.2e−09 • Extends to m1/2 ~ 4 TeV • Neutralino has Higgsino mixture • Truncated by mh 127 421 – A0 ~ 0, large m0/m1/2 128 521 • Imposing dark matter density constraint • Focus-point strip: tan b = 10, A0 = 0 , µ > 0 4000 1.0×104 What Parts of High-Mass Parameter Space are Allowed? 8 12 128 621 126 127 621 125 127 128 721 128 125 125 1 127 26 126 126 124 1000 122 126 130 LHC 300 130 LHC 8 TeV 126 132 125 124 127 128 128 128 LHC 3000 128 125 125621 125421 126 821 128 621 128 2000 821 126 126 7 12 132 m1/2 (GeV) 130 421 O. Buchmueller, JE, K. Olive et al. 7 12 3000 125 • Extends to m1/2 ~ 13 TeV • Very small mass difference: mstop – mχ • mh very uncertain 132 130 – A0 ~ 3 m0, large m0/m1/2 HE-LHC 1 28 • Imposing dark matter density constraint • Stop coannihilation strip: tan b = 10, A0 = 2.3m0, µ > 0 4000 100 0.0 m0 (GeV) 1.0×104 Exploring the Stop Coannihilation Strip • Extends close to boundary of stop LSP wedge Sensitivity of LHC Run II Present bounds • Extends to masses far beyond current limits JE, Olive & Zheng: arXiv:1404.5571 Exploring the Stop Coannihilation Strip • Extended by Sommerfeld effects on annihilations • Compatible with LHC measurement of mh • May extend to mχ = mstop ~ 6500 GeV JE, Olive & Zheng: arXiv:1404.5571 Exploring the Stop Coannihilation Strip • Present limits extend to mstop ~250 GeV • Future LHC runs should reach mχ=mstop~500 GeV • Unfinished business for FCC-hh? JE, Olive & Zheng: arXiv:1404.5571 Direct Dark Matter Searches • Compilation of present and future sensitivities Range calculated along stop strip Neutrino “wall” JE, Olive & Zheng
© Copyright 2026 Paperzz