Convergence of Sequential
Monte Carlo Methods
Dan Crisan, Arnaud Doucet
Problem Statement
X: signal, Y: observation process
X satisfies X 0 0 (dx0 ) and evolves according to
the following equation,
Pr ( X t At | Y0:t 1 y0:t 1 , X 0:t 1 x0:t 1 )
kt ( y0:t , x0:t 1, dxt ), At B( R nx )
At
Y satisfies
Pr (Yt Bt | Y0:t 1 y0:t 1 , X 0:t x0:t )
g t ( y0:t , x0:t )dyt , Bt B ( R y )
n
Bt
Bayes’ recursion
Prediction
t ( A0:t )
A0:t 1
kt ( y0:t , x0:t 1, At ) t 1 (dx0:t 1 )
( t , f t ) ( t 1 , kt f t )
Updating
t ( A0:t ) Ct1 g t ( y0:t , x0:t ) t (dx0:t 1 )
A0:t
( t , f t ) ( t , f t g t )( t , g t ) 1
A Sequential Monte Carlo
Methods
Empirical measure
1
(dx ) (dx )
N
Transition kernel t ( y0:t , x0:t 1 , t 1 , dx0:t )
Importance distribution ~t t 1t
N
N
t
0:t
i 1
(i )
x0:t
0:t
t : abs. continuous with respect to
h
: strictly positive Radon Nykodym derivative
d
d
~
~t
h
~
Then is also continuous w.r.t. t and
d
d
~
g h
Algorithm
Step 1:Sequential importance sampling
sample: ) t:0~xd , 1Nt , 1)ti:0( x , t:0y ( t ~ ) )ti:(0~x (
evaluate normalized importance weights
) )ti:(0~x , 1Nt , t:0y ( th) )ti:(0~x , t:0y ( t g
) i(
t
w
and let
1 N
N
~
t (dx0:t ) ~x ( i ) (dx0:t )
N i 1 0:t
1 N
N
t (dx0:t ) t( i ) ~x ( i ) (dx0:t )
0:t
N i 1
Step 2: Selection step
~x{
}
multiply/discard particles
with
) i(
high/low importance weights tw to obtain
N ) i(
N particles 1 i} t:0x{
let assoc.empiricalNmeasure
N ) i(
1 i t:0
tN (dx0:t )
1
N
i 1
x0(:it)
(dx0:t )
Step 3: MCMC step
sample ) t:0xd , 1Nj} ) jt:0(x{( tK )ti:0(x ,where K is a
Markov kernel of invariant distribution ) t:0xd( t
N
and let
1
tN (dx0:t ) x (dx0:t )
N
i 1
(i)
0:t
Convergence Study
denote f sup x | f ( x) |
convergence to 0 of average mean square
2
N
error E t , f t t , f t
under quite general conditions
tN
Then prove (almost sure) convergence of
t
toward
under more restrictive conditions
n
Bounds for mean square errors
Assumptions
1.-A Importance distribution and weights
t is assumed abs.continuous with respect to ~t
) i( ~
) i( ~
n t
)
,
y
,
x
(
h
)
y
,
P
((
R
)
),
for all
t:0
t:0
t
t:0
t:0x ( t g
is a bounded function in argument x0:t ( R n x ) t 1
x
( ~t , f t g t ht )
( t , f t ) ~
,
( t , g t ht )
define
t ( y0:t , x0:t 1 , u, d~
x0:t ),
u
t
t ( y0:t , x0:t 1 , v, d~
x0:t ),
v
t
htu () ht ( y0:t , u,),
htv () ht ( y0:t , v,)
There exists a constant dt s. t. for all
n t
there exists f t 1 B R with ft 1 ft s.t.
x
t f t t f t d t ( , f t 1 ) ( , f t 1 )
There exists
fh
s. t.
g t ht g t ht ( , f h ) ( , f h )
and a constant et s.t.
ht ( x0:t ) ht ( x0:t ) et min( ht ( x0:t ), ht ( x0:t )
f t B R nx
t 1
2.-A Resampling/Selection scheme
N
E ( N ( i )t Nwit )q ( i )
i 1
2
Ct N max q ( i )
2
First Assumption ensures that
Importance function is chosen so that the
corresponding importance weights are
bounded above.
Sampling kernel and importance weights
depend “ continuously” on the measure
variable.
Second assumption ensures that
Selection scheme does not introduce too
strong a “discrepancy”.
Lemma 1
Let us assume that for any
E (( tN1 , f t 1 ) ( t 1 , f t 1 )) 2 ct 1
f t 1
N
then after step 1, for any
f
E (( ~tN , f t ) ( ~t , f t )) 2 c~t t
N
2
f t B R nx
2
Lemma 2
Let us assume that for any
2
E (( tN1 , f t 1 ) ( t 1 , f t 1 )) 2 ct 1
then for any
ft B R
n x t 1
E (( tN , f t ) ( t , f t )) 2 ct
ft
N
2
f t 1
N
f t 1 B R nx
t 1
t
ft B R
n x t 1
ft
N
2
~
~
~
E (( t , f t ) ( t , f t )) ct
N
2
Lemma 3
Let us assume that for any
2
ft
E (( tN , f t ) ( t , f t )) 2 ct
N
then after step 2, for any
Let us assume that 2for any
ft
E (( , f t ) ( t , f t )) ct
N
t
2
N
E (( tN , f t ) ( t , f t )) 2 ct
ft
then for any
f t B R nx
t 1
t 1
N
Lemma 4
f t B R nx
2
ft
E ((tN , f t ) ( t , f t )) 2 ct
f t B R nx
t 1
N
2
ft B R
n x t 1
Theorem 1
For all t 0 , there exists ct
independent of N s.t. for any
E (( tN , f t ) ( t , f t )) 2 ct
ft
N
2
f t B R nx
t 1
© Copyright 2026 Paperzz