Input to state stability of evolution equations

Input to state stability of evolution equations
Birgit Jacob
Joint work with R. Nabiullin, J.R. Partington and F. Schwenninger
Linear systems with unbounded control operator B
ẋ(t) = Ax(t) + Bu(t),
x(0) = x0
I A generates a C0 -semigroup (etA )t≥0 on a Banach space X
I B : U → X−1 bounded
(We have: X ,→ X−1 )
Let x0 ∈ X and u ∈ L∞ (0, ∞; U). The (mild) solution
Z t
x(t) = etA x0 +
e(t−s)A Bu(s) ds
0
is in general only defined in X−1 .
(Σ)
Existence of mild solutions in X
ẋ(t) = Ax(t) + Bu(t),
B L∞ -admissible
:⇐⇒
x(t) ∈ X,
x(0) = x0
(Σ)
u ∈ L∞ , t > 0
Proposition
I B L∞ -admissible
⇐⇒
∀ t > 0 ∃ c(t) > 0
kx(t)kX ≤ ketA x0 kX + c(t)kukL∞
I B L∞ -adm. & (etA )t≥0 exp. stable
kx(t)kX ≤ Meωt kx0 k + ckukL∞
u ∈ L∞ , x0 ∈ X
⇐⇒
∃ M, c > 0, ω < 0
u ∈ L∞ , x0 ∈ X, t > 0
In the following we assume that B is L∞ -admissible.
Stability notions for inhomogeneous equations
ẋ(t) = Ax(t) + Bu(t),
x(0) = x0
(Σ)
Aim: Stability notions that consider initial conditions x0 and inputs u.
+
K = {µ ∈ C(R+
0 , R0 ) | µ strictly increasing, µ(0) = 0, unbounded}
Σ is L∞ -input-to-state stable (L∞ -ISS) :⇐⇒ ∃ β ∈ KK−1 , γ ∈ K
kx(t)k ≤ β(kx0 k, t) + γ(kukL∞ ),
u ∈ L∞ , x0 ∈ X, t > 0
Σ is L∞ -integral input-to-state stable (L∞ -iISS) :⇐⇒
∃β ∈ KK−1 , θ,µ ∈ K
Z
kx(t)k ≤ β(kx0 k, t) + θ
0
t
µ(ku(s)k)ds ,
u ∈ L∞ , x0 ∈ X, t > 0
Stability notions for inhomogeneous equations
ẋ(t) = Ax(t) + Bu(t),
x(0) = x0
(Σ)
+
K = {µ ∈ C(R+
0 , R0 ) | µ strictly increasing, µ(0) = 0, unbounded}
Σ is L∞ -input-to-state stable (L∞ -ISS) :⇐⇒ ∃ ω < 0, M ≥ 1, γ ∈ K
kx(t)k ≤ Meωt kx0 k + γ(kukL∞ ),
u ∈ L∞ , x0 ∈ X, t > 0
Σ is L∞ -integral input-to-state stable (L∞ -iISS) :⇐⇒
∃ ω < 0, M ≥ 1, θ,µ ∈ K
kx(t)k ≤ Meωt kx0 k + θ
Z
0
t
µ(ku(s)k)ds ,
u ∈ L∞ , x0 ∈ X, t > 0
L∞ -input-to-state stability
Σ is L∞ -ISS
⇐⇒
∃ ω < 0, M ≥ 1, γ ∈ K :
u ∈ L∞ , x0 ∈ X, t > 0
ωt
kx(t)k ≤ Me kx0 k + γ(kukL∞ ),
B is L∞ -adm. & (etA )t≥0 exp. stable
kx(t)kX ≤ Meωt kx0 k + ckukL∞ ,
⇐⇒ ∃ ω < 0, M ≥ 1, c > 0 :
u ∈ L∞ , x0 ∈ X, t > 0
Proposition
Σ
L∞ -ISS
⇐⇒
(etA )t≥0 exp. stable
&
B L∞ -admissible
L∞ -integral input-to-state stability
Recall
Σ is L∞ -iISS
⇐⇒ ∃ ω < 0, M ≥ 1, θ,µ ∈ K :
Z t
ωt
kx(t)k ≤ Me kx0 k + θ
µ(ku(s)k) ds
u ∈ L∞ , x0 ∈ X, t > 0
0
Proposition
Σ L∞ -iISS
=⇒
⇐⇒
Question:
(etA )t≥0 exp. stable & B L∞ -admissible
Σ L∞ -ISS
Σ L∞ -ISS
=⇒
Σ L∞ -iISS ?
Are Lp -spaces sufficient?
Σ is L∞ -iISS
⇐⇒ ∃ ω < 0, M ≥ 1, θ,µ ∈ K :
Z t
ωt
kx(t)k ≤ Me kx0 k + θ
µ(ku(s)k) ds
u ∈ L∞ , x0 ∈ X, t > 0
0
∃ ω < 0, M ≥ 1, p ≥ 1:
1/p
Z t
p
ωt
(ku(s)k) ds
kx(t)k ≤ Me kx0 k +
u ∈ L∞ , x0 ∈ X, t > 0,
0
=⇒ Σ is L∞ -iISS
Converse direction is in general false
Example: X = `2 , Aen := −2n en , U := R, B := (2n /n)n∈N .
Orlicz Spaces
Definition:
Φ : (0, ∞) → (0, ∞) is a Young-Function
Z s
Φ(s) =
φ(τ )dτ
with
if
0
I φ : (0, ∞) → (0, ∞) right-continuous & increasing,
I lims→0+ φ(s) = 0, lims→∞ φ(s) = ∞
Example:
es − s − 1, sp for p ∈ (1, ∞)
Definition (Orlicz Space)
k·kE
(0,t)
EΦ (0, t) := L∞ (0, t) Φ
with
Z t
kukEΦ (0,t) = inf{k > 0 |
Φ(k−1 ku(s)k)ds ≤ 1}
0
Orlicz Spaces
k·kE
(0,t)
with
EΦ (0, t) := L∞ (0, t) Φ
Z t
kukEΦ (0,t) = inf{k > 0 |
Φ(k−1 ku(s)k)ds ≤ 1}
0
I EΦ (0, t) is a Banach space.
I L∞ (0, t) ,→ EΦ (0, t) ,→ L1 (0, t).
I u ∈ L1 (0, t)
∃ Young-Function Φ : u ∈ EΦ (0, t).
Z t
Φ(k−1 ku(s)k)ds ≤ 1 ⇐⇒
ku(s)kp ds ≤ kp
0
0
Z t
p
1/p
kukEΦ (0,t) = ( ku(s)k ds) ,
EΦ (0, t) = Lp (0, t)
Let Φ(s) = sp :
=⇒
⇒
Z
t
0
L∞ -iISS = EΦ -ISS
Recall
Σ is L∞ -iISS
⇐⇒
∃ ω < 0, M ≥ 1, θ, µ ∈ K:
Z t
ωt
kx(t)k ≤ Me kx0 k + θ
µ(ku(s)k) ds , u ∈ L∞ , x0 ∈ X, t > 0
0
Definition
Σ is EΦ -ISS
⇐⇒
∃ ω < 0, M ≥ 1, γ ∈ K :
kx(t)k ≤ Meωt kx0 k + γ(kukEΦ ) ∀u ∈ EΦ , x0 ∈ X, t > 0
Theorem
Σ
L∞ -iISS
(J., Nabiullin, Partington, Schwenninger ’16)
⇐⇒
∃ Young-Function Φ : Σ EΦ -ISS
Continuous mild solutions
Recall:
B is L∞ -admissible
⇐⇒
∀ t > 0 ∃ c(t) > 0
kx(t)kX ≤ ketA x0 kX + c(t)kukL∞
Mild solution: x(t) = etA x0 +
Z
∀u ∈ L∞ , x0 ∈ X
t
e(t−s)A Bu(s) ds
0
Proposition
(J., Nabiullin, Partington, Schwenninger ’16)
I Σ has cont. mild solutions in X
I Σ L∞ -iISS
=⇒
=⇒
B is L∞ -adm.
Σ has continuous mild solutions in X
Open Problem of G. Weiss ’89
Does L∞ -adm. of B imply the continuity of all mild solutions in X?
What do we know so far?
Let (etA )t≥0 be exp. stable
L∞ -iISS
EΦ -ISS
L∞ -ISS
mild soln cont.
L∞ -adm.
Questions:
Σ L∞ -ISS
=⇒ Σ L∞ -iISS?
B L∞ -adm. =⇒ Σ has continuous mild solutions?
Parabolic diagonal systems
ẋ(t) = Ax(t) + Bu(t),
Definition:
x(0) = x0
Σ is called a parabolic, diagonal system
(Σ)
if
Aen = λn en
D(A) = {x : (λn xn ) ∈ `2 (N)}
λn
(en )n∈N ONB of X,
B ∈ L(C, X−1 )
Then APgenerates an exp. stable, analytic
C0 -semigroup and
−1 x ) ∈ `2 (N)
X−1 =
x
e
|
(λ
n n
n n n
P |bn |2
Remark: B ∈ L(C, X−1 ) =⇒ B = (bn ) ∈ X−1 ⇐⇒ n |λ
2 < ∞.
n|
Parabolic diagonal systems: Main result
Theorem
(J., Nabiullin, Partington, Schwenninger ’16)
Σ diagonal, parabolic system
=⇒
Σ L∞ -iISS
Remark
Let Σ be a diagonal, parabolic system. Then
(i) Σ is L∞ -admissible
(ii) Σ is L∞ -iISS
(iii) Σ is L∞ -ISS
(iv) Mild solutions are continuous.
Remark: Result also hold for:
(etA )t≥0 exp. stable & analyic on a Hilbert space,
(−A)1/2 & (−A∗ )−1/2 L2 -admissible and U = Cn
(see talk of Felix Schwenninger)
Sketch of the proof: w.l.o.g. X = `2
2
Z
2
Z t
tX
λn (t−s)
e(t−s)A Bu(s)ds = e
b
e
u(s)ds
k k
2 0 k
0
`
`2
Z
2
X
t
=
|bn |2 eλn s u(s) ds ≤ · · ·
n∈N
0
Z tX
|bn |2 Re λn s
≤
e
|u(s)|2 ds ≤ · · ·
|Re
λ
|
n
0 n∈N
Z tX
2
|bn | Re λn s
≤
e
|u(s)|2 ds
|Re
λ
|
n
0 n∈N
|
{z
}
=:f (s)
We have f ∈ L1 (0, ∞)
Thus there exits a Young-Function Ψ : f ∈ EΨ (0, t).
Further we use Orlicz space theory to obtain the result.
Positive systems
Theorem
(J., Wintermayr ’17)
Let
I X be a Banach lattice
I (etA )t≥0 be a positive semigroup
I B ∈ L(Cn , X−1 ) positive
Then:
I B L∞ -admissible
I X reflexive
⇒
⇒
Σ
Mild solutions are continuous in X
L∞ -iISS
Thanks for your attention!