Out-of-Step Operation Recognition

RUSSIA
GERMANY
Development of Selective Automatic Systems
for Prevention and Elimination of Out-of-Step Operation
Using PMU
Nikolai VOROPAI
Dmitry EFIMOV
Dmitry POPOV
Christian REHTANZ
Ulf HÄGER
International Scientific & Technical Conference
Actual Trends in Development of Power System Protection and Automation
7-10 September 2009, Moscow
• Points of
Interest
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
 Development
of selective
automatic
systems intended to prevent and eliminate
out-of step operation
 Using in those systems the synchronized
voltage phase measurements from PMU
 The operation criteria and principles of the
Selective Out-of-Step Protection and
Prevention Systems (SOSPPS)
 Related Problems
• Points of
Interest
HOW DOES IT WORK?
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
•• Conclusion
Case Study 2
• Conclusion
WHAT DO WE NEED?
 for any OSPS – the way to recognize out-of-step operation
 for Selective OSPS (SOSPS) – the relays of active power
direction
 for OSPS with Prevention function (SOSPPS) – the ways of
connection/disconnection of generators and loads in EPSs
I , p.u.
• Points of
Interest
 With magnitude of
current
• Out-of-Step
Protection
Systems
 With “Phantom schemes” 1,0
(comparing the measured
and calculated voltages) I set
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
1,2
0,6
 M , grad
0,4
120
0,2
 Mset
60
40
60
80
100
 , grad
 act1  act 2  act 3
 With angle and angular speed
of equivalent generators (using
30
0
20
0
equal area criterion, or
compensating impedances)
30
60
 , grad  ...
 act 3
 act1
 act 2
 Directly from PMU
• Points of
Interest
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles
of SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
Secure state
 ij   lim
Dangerous state
• Case Study 2
• Conclusion
Cut-set unloading
as
 ij   lim
Emergency state
(out-of-step conditions)
ij   lim
• PMU
Allocation
• Case Study 1
 ij   lim
Post-emergency state
Elimination of out-of-step
conditions by
disconnecting a cut-set
PG  PL
in subsystems
Generation unloading,
automatic frequency load
shedding in disconnected
subsystems
• Points of
Interest
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
 For Cut-set Unloading Stage:
ul
Cact

 ij t 
  lim
 For Division Stage:
as
Cact


as
 ij t    lim
?


• Points of
Interest
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
d 2ij t 
Let
an 
Then
C   ij t   0  an  amin   ...
dt 2

t  tn

...  an 1  amin   an  2  amin
or



C   ij t   0  an  amin   ...
...  an 1  amin   an  2  amin 
And finally for Division Stage:
as
Cact



as
 ij t    lim
 C  C 

• Points of
Interest
 Option 1 – at switchgears of power plants:
• Out-of-Step
Protection
Systems
+ Much more stable (smooth) change of angles
• Out-of-Step
Operation
Recognition
- When out-of-step operation the cut-set in a
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
in transient
whole have to be tripped
 Option 2 – at the ends of transmission lines:
+ Only certain lines are to be tripped to avoid
out-of-step operation
- Irregular behavior of voltage angles prevents
to numerical derivation
? Which lines of the cut-set are to be equipped
with PMU?
• Points of
Interest
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
Disturbance: Tripping of tie line 8-5 (one system)
• Points of
Interest
• Out-of-Step
Protection
Systems
grad,
grad/s
Time behavior of  , d/dt and d2/dt2
for the tie 8-5
grad/s2
120
2400
in the absence
of control actions
90
1800
• Out-of-Step
Operation
Recognition
60
1200
• Principles of
SOSPPS
Designing
30
600
0
• Criteria for
Actions of
SOSPPS’s
Stages
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
-30
-600
120
2400
when maximum permissible
unloading the cut-set
90
1800
• PMU
Allocation
60
1200
• Case Study 1
30
600
• Case Study 2
0
• Conclusion
0
0
-30
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
-600
• Points of
Interest
• Out-of-Step
Protection
Systems
grad,
grad/s
Time behavior of  , d/dt and d2/dt2
for the tie 202-100
grad/s2
120
2400
in the absence
of control actions
90
1800
• Out-of-Step
Operation
Recognition
60
1200
• Principles of
SOSPPS
Designing
30
600
0
• Criteria for
Actions of
SOSPPS’s
Stages
0
0
0,1
-30
120
0,2
0,3
0,4
0,5
0,6
0,7
0,8
-600
2400
when maximum permissible
unloading the cut-set
90
1800
• PMU
Allocation
60
1200
• Case Study 1
30
600
• Case Study 2
0
• Conclusion
0
0
-30
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
-600
S
Simplified network
model with the following data:
– 31 nodes
– 6 interconnecting
lines
PL
– 2 PMUs
D
Ltg-Ers atz -D-PL-Nord
D-Ersatznetz-Nord/D-E-N
G
~
• Conclusion
220kV
D-Ex ternes Netz -Süd
PL-SW-Gen
PL-SM -Gen
~
G
~
G
PL-SW-Load
UA-NW-Load
PL-SM -Load
UA-NM
750kV
Ltg-PL-SM -SO
G
~
PL-SO-Load
PL-SO-Gen
Ltg-PL-CZ
UA-SM -Load
CZ-N-Gen
2
1
SK-NW-Load
G
~
380kV
G
~
SK-NW-Gen
Ltg-SK-UA
SK-O
UA-SW
Ltg-SK-SW-O
SK-O-Load
UA-SW-Load
Ltg-A-H
A-NO-Load
Ltg-H-W-M
PMU
H-W-Load
G
~
Ltg-H-O-UA-SW-220k V-B
Ltg-H-O-UA-SW-380k V
Ltg-H-SK-Os t
750kV
Ltg-H-M -O
H-M
H-W/H-W
A-NO/A-NO
A-Ers atz -Zus atz l as t
G
~
SK-SW-Gen
Ltg-H-SK-Wes t
Ltg-A-CZ
Ltg-A-Ers atz
A-Ex ternes Netz
SK-SW-Load
Ltg-CZ-SK-Süd
Ltg-H-O-UA-SW-220k V-A
CZ-S/CZ-S
Ltg-CZ-Ers atz -SW-SO
Ltg-H-M -UA-SM
G
~
SK-O-Gen
SK-SW/SK-SW
220kV
~
G
Transit of 3000 MW from
Both 750kV lines out of operation
A
Fault
on internal line within IPS/UPS
Line gets tripped 150 ms later
!!!
Automatic reclosing 500 ms later
Fault current does not relight
A-Ersatznetz/A-E
G
~
UA-SM -Gen
CZ-S-Gen
CZ-S-Load
Fault Scenario 2:
–
–
–
–
–
–
PMU
Ltg-SK-NW-O
380kV
Ltg-CZ-Ers atz -SW-NO
G
~
UA-NM -Gen
UA-SM
SK-NW
Ltg-SK-NW-SW
CZ-N-Load
Ltg-CZ-N-S
Ltg-CZ-Ers atz -NW-SW
CZ-Ex ternes Netz -Süd
•
Ltg-CZ-SK-Nord
CZ-N/CZ-N
Ltg-CZ-Ers atz -NW-SO
UA-NM -Load
Ltg-PL-SK
SK-NW/SK-NW
CZ-Ex ternes Netz -Nord
Ltg-PL-UA-Süd
Ltg-UA-NW-SW
D-Ers atz -Süd-Zus atz l as t
CZ-Ersatznetz-Nord/CZ-E-N
Ltg-UA-NW-NM
PL-SO
Ltg-PL-SW-SM
Ltg-D-CZ
G
~
UA-NW-Gen
PL-SM/PL-SM
PL-SW/PL-SW
Ltg-Ers atz -D-PL-Süd
UA-NW
Ltg-UA-NW-SM
– Transit of 3000 MW
– Both 750kV lines out of operation
–!!!Fault on interconnecting line
– Line gets tripped 150 ms later
– Automatic
reclosing 500 ms later
CZ
– Fault current relights
 final tripping 150ms later
Ltg-PL-UA-Nord
220kV
Ltg-D-N-S
Ltg-PL-NW-SW
Ltg-PL-NM -SM
Fault Scenario 1:
CZ-Ersatznetz-Süd/CZ-E-S
• Case Study 2
PL-NO-Load
PL-NO-Gen
Ltg-PL-NO-SO
•
PL-NM -Load
Ltg-UA-SW-SM -B
G
~
PL-NM -Gen
Ltg-UA-SW-SM -A
G
~
Ltg-CZ-Ers atz -NW-NO
• Case Study 1
PL-NO
PL-NM/PL-NM
PL-NW-Gen
PL-NW-Load
• Principles of
SOSPPS
Designing
• PMU
Allocation
UA
Ltg-PL-NM -NO
D-Ersatznetz-Süd/D-E-S
• Criteria for
Actions of
SOSPPS’s
Stages
UA-SM/UA-SM
IPS/UPS
UCTE
Ltg-PL-NW-NM
PL-NW/PL-NW
D-Ex ternes Netz -Nord
• Out-of-Step
Operation
Recognition
S-Ex ternes Netz
UA-NM/UA-NM
UA-NW/UA-NW
S-Ersatznetz/S
G
~
H-M -Load
H-W-Gen
G
~
H-M -Gen (U-Regl er)
H-O
H-O-Load
G
~
H-O-Gen
A-NO-Gen
HR
Ltg-H-HR
• Out-of-Step
Protection
Systems
•
Ltg-PL-S
• Points of
Interest
Ltg-H-SRB
SRB
H-O/H-O
H-M/H-M
PL-NO/PL-NO
PL-SO/PL-SO
SK-O/SK-O
• Case Study 1
• Case Study 2
[deg]

1
2
3
1
0
5
Situation with Defense Plan
1
1
0
0
1
2
3
4
90
6
0
4
0
0
1
2
3
4
1.25
6
0
1
III
6
0.75
1
2
3
Simulation Time [s]
4
4
0
-2
2
3
4
6
Secure State
Endangered State
Disturbed State
Blackout
5
6
H-W
H-O
4
2
1
5
I:
II:
III:
IV:
6
0
0
3
I
1
0.5
2
H-W
H-O
II 5
5
6
0
1
H-W
H-O
2
3
4
5
6
1.25
1
0.75
H-W
H-O
0.5
0.25
• Conclusion
5
IV
System State
2
-2
6
380-kV-Line (SK - UA)
220-kV-Line
(PL - UA)
180
380-kV-Line (H - UA)
220-kV-Lines (H - UA)
1
[deg]
0
4

0
0.25
• PMU
Allocation
0
P Gen [GW]
• Criteria for
Actions of
SOSPPS’s
Stages
0
V [pu]
• Principles of
SOSPPS
Designing
90
Line State
• Out-of-Step
Operation
Recognition
180
P Gen [GW]
• Out-of-Step
Protection
Systems
Situation without Defense Plan
V [pu]
• Points of
Interest
0
1
2
3
4
5
6
Simulation Time [s]
13
• Points of
Interest
• Out-of-Step
Protection
Systems
• Out-of-Step
Operation
Recognition
• Principles of
SOSPPS
Designing
• Criteria for
Actions of
SOSPPS’s
Stages
• PMU
Allocation
• Case Study 1
• Case Study 2
• Conclusion
 As any monitoring tool PMUs should be
installed at the most sensitive places of
EPS.
 Existing PMUs can not be used for transient
stability analysis when installing far from
generators.
 To become the universal monitoring tool
future PMUs must be able to measure also
angular derivatives.