In Exercises 1-12, graph each set of integers on a number line. 1. 7

Math 40
Prealgebra
Section 2.1 – HOMEWORK
In Exercises 1-12, graph each set of integers on a number line.
1.
7,  2,  7, and 2
2.
9,  3,  6, and  4
3.
8,  6, 3, and 0
4.
10,  10,  5, and 1
5.
4, 2, 9, and  4
6.
0,  3,  7, and  6
7.
10,  5, 1, and  7
8.
4, 8,  5, and 6
9.
9,  1, 8, and  2
10.
7,  8,  9, and 3
11.
2, 5, 0, and 6
12.
4, 5, 6, and  1
In Exercises 13-22, write < or > between each pair of integers to make a true statement.
13.
6
15.
9
17.
5
19.
2
21.
10
0
9
7
 16
 12
14.
8
0
16.
9
1
18.
5
7
20.
0
22.
14
  1
 18
 17
In Exercises 23-32, simplify each expression.
23.
  5 
24.
25.
 5
26.
1
27.
 8
28.
8
29.
3
30.
9
31.
0
32.
 9
1
2015 Carreon
Math 40
Prealgebra
Section 2.1 – HOMEWORK
In Exercises 33-38, translate the following English phrases into a numerical expression and simplify if
possible.
33.
a) the absolute value of 8
b) the absolute value of negative 8
34.
a) the opposite of 17
b) the opposite of 17
35.
a) the absolute value of negative 14
b) the opposite of the absolute value of 14
36.
a) the opposite of the absolute value of 2
b) the absolute value of negative 2
37.
a) the opposite of negative 4
b) the opposite of the absolute value of negative 4
38.
a) the opposite of the absolute value of 1
b) the absolute value of 1
In Exercises 39-46, write < ,  , or > between each pair of integers to make a true statement.
39.
5
41.
  8
43.
7
45.
  10
5
8
 7
 10
40.
 9
9
42.
4
  4
44.
13
  13
46.
  6 
 6
2
2015 Carreon