Linear Program MAX s.t. CBXB + CNBXNB BXB + ANBXNB = b XB , XNB ≥ 0 Important LP Equations XB B b -1 Z CB B b -1 B -1 jNB a jx j C B a -1 jNB B j - cj x j Important LP Derivatives Z -1 - (C B B a j - c j ) x j j NB X B -1 - B a j j NB x j Duality Pr imal Max s.t. Dual CX Min AX b X 0 s.t. Ub UA C U 0 Duality Primal Solution Item Solution Primal function Objective Information Shadow prices Dual Solution Item Corresponding Dual Solution Information Objective function Variable values Slacks Reduced costs Variable values Shadow prices Reduced costs Slacks Unbounded Solution x2 Objective increases x1 Infeasible Solution x2 A B x1 Multiple Optima x2 Isocline with highest objective P1 P2 x1 Degeneracy x2 x1 P1 Complementary Slackness • derived from duality * 0 U A C X * 0 U *' b AX *' Reduced Cost -1 CBB a - c • Negative derivative of objective function with respect to a variable • At optimality: – Zero for all basic variables – Non-negative for all non-basic variables (max) – Non-positive for all non-basic variables (max) Multi-input, Multi-output Max c X p p - Xp j j - - q pj e Z k k k j p s.t. d Y Yj 0 0 j r Y kj j mj Yj - Zk j s bm j Xp , Yj , Zk 0 Mixing / Blending Min c F a F a F F j j j s.t. ij j UL i for all i ij j LL i for all i j 1 0 j j j Fj for all j Spatial Equilibrium (GAMS Ex.) Max pr,k Yr,k T c r,r,k Tr,r,k r, j,u r,r,k r,k X c r, j,u Xr, j,u a s.t. r, j,u,i X r, j,u b r,i X r, j,u 0 j Tr,r,k r Yr,k Tr,r,k y r, j,u,k j,u r d r,k Yr,k Yr,k , T , X r, j,u 0 Sequencing Max - c jX jt1 X jt1 t1 t j a jX jt j X jt , d Y kt 2 k e Z s st 3 t3 s t2 k t1 j s.t. - Y 0 st 3 0 st g mt kt 2 k t2 t Ykt 2 t3 t s k t2 t b Y j Z kt f Z s s k Ykt 2 , Zst 2 0 Sequencing Week1 - X1 Week2 - X1 - X2 Week3 - X1 - X2 - X3 Week3 Y1 Y1 Y2 Y1 Y2 Y3 dY1 Week1 aX 1 Week2 cX 3 0 0 0 T1 eY2 bX 2 T2 fY 3 T3 Storage Max c X t t - t s.t. cs H t t t t T X1 Xt - H t-1 XT - H T-1 H1 s0 Ht 0 0 Xt Ut Xt Lt 0 Xt , Ht Lexicographic preferences Min s.t. wi wr Tr glr glr g rjX j 0 for all r for all r j a mj X j bm for all m j wr wr for all r i wr for all r i wr 0 for all r Xj 0 for all j glr unrestricted for all r Weighted Preferences Max c q r r r g rjX j gl r 0 s.t. for all r j Nrqr a glr 0 mj Xj for all r b m for all m j qr Xj 0 for all r 0 for all j glr unrestricted for all r Cost Well behaved, Separable Function Input X A1 A2 A3 A4 Cost Well behaved, Separable Function c4 c3 c2 Input X c1 A1 A2 A3 A4 Well behaved, Separable Function Min c S S i i i s.t. i X 0 i di Si Si , X 0 for alli Disequilibrium – Known Life Max t (1 r) C jt X j,t t s.t. (1 r) T j F I je je j A j e K j ije e eK j X j,t e X j,e X*j,e X j,T e bit I je 0 I je 0 j X j,t , Disequilibrium – Unknown Life Max (1 r) t s.t. j eK j t (1 r) T F C je X j,t,e A X j,t,e bit X j,0,e X*j,0,e j e K j ije X j,T,e X j,t 1,e 1 j eK j je I je I je X j,t,e X j,t,e 0 0 , I je 0 Equilibrium - Unknown Life Max C j s.t. X je ije X je e A j je bi e X je X j,e 1 0 X je 0 Fixed Costs Max CX s.t. X - FY MY 0 0 X Y 0 or 1 Fixed Capacity Max C m m s.t. - Fk Yk Xm k Xm Cap km Yk 0 0 k Xm Yk 0 or 1 Minimum Habitat Size population hmin 0 HAB0 area HAB1 Minimum Habitat Size HAB HAB h HAB0 , min I 0 HAB1 h max h min I 0 d HAB1 d h min I 0 HAB1 0 0 POP POP, h 0 min I 0,1 Warehouse F V Min k k k s.t. C i k ik X ik X D k ik kj Ykj j Y Y kj k i E Z ij ij Z ij ij Dj i k X ik kj j Si j Z i 0 0 j CAPk Vk Y kj j A mk Vk bm k Vk 0 or 1, X ik , Ykj , Zij 0 Mutual exclusive products MY1 X Z Y1 0 MY2 0 1 Y2 0 X, Z Y1 , Y2 0 or 1 Either-Or-Active constraints A1X - MY b1 A 2 X + MY b 2 M X Y 0 0 or 1 Distinct Variable Values X -V1Y1 -V2 Y2 Y1 Y2 X ... -Vk Yk 0 Yk 1 0 ... ... Y1 , Y2 , ... Yk 0 or 1 Badly behaved non-linear functions Badly behaved non-linear functions 1 2 3 4 1 - - Z2 Z3 Z1 Z2 , 0 0 Z4 0 Z4 2 1 Z4 1 Z4 1 0 Z3 Z1 3 - Z1 , 0 Z3 4 2 Z2 3 , 1 Z1 2 1 4 Z1 , Z2 , Z3 , Z4 = 0 or 1 Non-linear Programming • Specification often straightforward • Solving more difficult – scaling (manual vs. computer) – lower bounds to avoid division by zero and other illegal operations – local versus global extremes
© Copyright 2025 Paperzz