RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Demosaicing with Improved Edge Direction Detection Presented By: Anthony Karloff RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Overview • • • • • Demosaicing Background Basics and Challenges Advanced Methods (State of the Art) Color Channel Reconstruction Conclusion RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Demosaicing Background Background Basics Advanced Methods Why Image Reconstruction? • Incomplete color planes from CCD sensors. Channel Reconstruction Conclusion Color Filter Array (CFA) on image sensor. RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Basics and Challenges Background Basics Advanced Methods Color Plane Interpolation • Must Interpolate color planes to re-create image. Channel Reconstruction Conclusion Red Channel Interpolation RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Basics and Challenges Background Basics Advanced Methods Color Plane Interpolation Methods • Pixel Averaging - lose image resolution R1 G1 P1 G2 B1 Channel Reconstruction Conclusion • • Nearest Neighbor - Poorest Quality Bilinear/Spline - Color artifacts at edges R1 G1 P1 G2 B1 G1 B1 G2 R1 G3 R2 G4 B2 G5 P1 RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Basics and Challenges Background Basics Advanced Methods Color Artifacts • Problem with most simple interpolation algorithms is the presence of color artifacts. Channel Reconstruction Conclusion Original Image Bilinear Interpolation of Bayer Image RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Basics and Challenges Background Basics Advanced Methods Color Artifacts • Due to interpolation across edges. Channel Reconstruction Conclusion Artifacts P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Bilinear Interpolation P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P21 P22 P23 P24 P25 Dark to Light Edge over Bayer Pattern Resulting Edge after Interpolation RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Channel Reconstruction Conclusion Advanced Techniques for Color Plane Interpolation • Use color plane gradients • Group pixels of similar objects • Interpolate along edges (not across) • Interpolate green color plane first • Interpolate image more than one iteration (refinement) RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Channel Reconstruction Conclusion Using Gradients for Image Reconstruction • Better estimation of color plane behavior. P1 P2 P3 P4 P5 P6 P7 P8 P9 Bayer Pattern for Green Centered Pixel 1. GRADIENTS • Dx ( P5) P 4 P6 2 Dy ( P5) P 2 P8 2 Dxd ( P5) P3 P 7 2 2 Dyd ( P5) P1 P9 2 2 Notice that the differences are always from the same color plane. RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Channel Reconstruction Conclusion Kimmels ‘E’ Function for Pixel Grouping • Associates colors of the same object. P1 P2 P3 P4 P5 P6 P7 P8 P9 Bayer Pattern for Green Centered Pixel • 1. GRADIENTS 2. GROUPING Ie. If P5 and Pi are part of the same object, E will be close to unity. Ei( P5) 1 1 Di ( P5) 2 Di ( Pi) 2 There are eight Ei values for each pixel. One for each neighbor. RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Using Edge Detection (Wide) • Interpolation is best performed in the same direction as an edge. Channel Reconstruction P1 P2 P3 P4 P5 Conclusion P6 P7 P8 P9 P10 1. GRADIENTS Edge detection of radius 3 P11 P12 P13 P14 P15 HG ( P13) P12G P14G P16 P17 P18 P19 P20 VG ( P13) P8G P18G P21 P22 P23 P24 P25 H R ( P13) P11R P15R 2 P13R Bayer Pattern for Red Centered Pixel VR ( P13) P3R P23R 2 P13R 2. GROUPING 3. EDGE DETECT 3 pxls RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Channel Reconstruction Conclusion Narrow Edge Detection • Uses narrow edge detection to improve edges by looking between color planes. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 1. GRADIENTS 2. GROUPING Edge detection of radius 2 Bayer Pattern for Red Centered Pixel 3. EDGE DETECT 3 pxls 4. EDGE DETECT 2 pxls HGR ( P13) P12G P14G 2P13R VGR ( P13) P2G P8G 2P13R HGB ( P13) 12 P7 B P9B 2P8G P17 B P19B 2P18B VGB ( P13) 12 P7 B P17 B 2P12G P9B P19B 2P14B RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Channel Reconstruction Local Inter-Channel Correlation • Compare average color differences in a 5x5 region to determine whether the Red or Blue channel is more closely related to the green. Conclusion CGR G 5 x 5 R 5 x 5 CGB G 5 x 5 B 5 x 5 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 1. GRADIENTS 2. GROUPING 3. EDGE DETECT 3 pxls 4. EDGE DETECT 2 pxls 5. COLOR CORRELATION P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 Bayer Pattern for Red Centered Pixel RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Advanced Methods Background Basics Advanced Methods Channel Reconstruction Conclusion Improved Edge Detector • Now we can complete the edge detector 3 4 H H H R H G GR H GB V V VR VG GR VGB 5 if CGR CGB otherwise if CGR CGB otherwise 1. GRADIENTS 2. GROUPING 3. EDGE DETECT 3 pxls 4. EDGE DETECT 2 pxls 5. COLOR CORRELATION 6. IMPROVED EDGE DETECTION RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Channel Reconstruction Background Basics Advanced Methods Channel Reconstruction Conclusion Channel Reconstruction Overview • For each pixel we now have: Ei(Pi) H V • Approximate the red and blue channels using Bilinear Interpolation. • Reconstruct the green channel using edge detectors and the approximated red and blue. • Reconstruct the red and blue channels using the complete green channel. 1. GRADIENTS 2. GROUPING 3. EDGE DETECT 3 pxls 4. EDGE DETECT 2 pxls 5. COLOR CORRELATION 6. IMPROVED EDGE DETECTION RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Channel Reconstruction Background Basics Advanced Methods Channel Reconstruction Conclusion 1. GRADIENTS 2. GROUPING Green Channel Reconstruction • For each Green pixel on a red center… E P12 ( P12G P12 R ' ) E P14 ( P14G P14 R ' ) if P7 P8 P9 E P12 E P14 P12 P13 P14 E ( P8G P8 R ' ) E P18 ( P18G P18 R ' ) P13G P13R P 8 if E E P8 P18 P17 P18 P19 E ( Pi Pi G PiR ' ) i 8,12,14,18 Bayer Pattern for Red EPi Centered Pixel i 8 ,12,14,18 H V H V otherwise • A similar approach is taken to the finding the green value at a blue centered pixel 3. EDGE DETECT 3 pxls 4. EDGE DETECT 2 pxls 5. COLOR CORRELATION 6. IMPROVED EDGE DETECTION RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Channel Reconstruction Background Basics Advanced Methods Blue and Red Channel Reconstruction • Blue and red channels are then completed using the full green channel. Channel Reconstruction P1 P2 P3 P4 P5 Conclusion P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P13B P13G Where… E 7 K 7 E 9 K 9 E17 K17 E19 K19 E 7 E 9 E17 E19 Ki PiB PiG P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 1. GRADIENTS Bayer Pattern for Red Centered Pixel Similar approach is taken for completing Red channel. 2. GROUPING 3. EDGE DETECT 3 pxls 4. EDGE DETECT 2 pxls 5. COLOR CORRELATION 6. IMPROVED EDGE DETECTION RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Conclusion Background Basics Conclusion Advanced Methods • Highly computational and hence slow. Channel Reconstruction • • Not suitable for real-time applications. • Improved Edge Quality. Conclusion Drastically reduces color artifacts. Thank You RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR References Background Basics Advanced Methods [1] D. Darian Muresan, S. Luke, and T. W. Parks, “Reconstruction of Color Images From CCD Arrays,” Cornell University, Ithaca NY. 1485, Channel Reconstruction [2] R. Kimmel, “Demosaicing: Image Reconstruction from Color CCD Samples” IEEE Transl. J. Image Processing, vol. 8, Sept. 1999. Conclusion [3] Xiaomeng Wang, Weisi Lin, Ping Xue, “Demosaicing with Improved Edge Direction Detection” IEEE Transl. J. Image Processing, 2005.
© Copyright 2026 Paperzz