SEF 1134 SEMESTER 1, 2O10/2011 QUESTION 1 [4 MARKS] Find

SEF 1134
SEMESTER 1, 2O10/2011
QUESTION 1 [4 MARKS]
Find the limit:
(๐‘ฅโˆ’3)2 (3โˆ’2๐‘ฅ 2 )3
๐‘ฅโ†’โˆ’โˆž (๐‘ฅโˆ’3)4 (2๐‘ฅ 2 โˆ’1)4
lim
[4M ]
QUESTION 2 [6 MARKS]
ax ๏€ซ b ๏€ญ 2
๏€ฝ1
x
x ๏‚ฎ0
Find numbers a and b such that lim
[6M]
QUESTION 3 [13 MARKS]
(a) If y ๏€ฝ ln(sin 3 2 x) , prove that
2๏ƒถ
๏ƒฆ
๏€ญ1 ๏ƒง 1 ๏€ญ x ๏ƒท
(b) Given that cos
2๏ƒท
๏ƒง
๏ƒจ1๏€ซ x ๏ƒธ
find
3
d2y
2
๏ƒฆ dy ๏ƒถ
๏€ซ ๏ƒง ๏ƒท ๏€ซ 36 ๏€ฝ 0
dx 2 ๏ƒจ dx ๏ƒธ
[6M]
๏€ซ ln(tan y ) ๏€ฝ a , where a is a constant ,
dy
in terms of x and y . Give your answer in the simplest form
dx
[7M]
QUESTION 4 [7 MARKS]
Given that y ๏€ฝ ae ๏€ญ2 x sin( x ๏€ซ b) , where a and b are constants.
Find
d2y
dx 2
in terms of y and
DEPARTMENT OF MATHEMATICS
dy
.
dx
[7M]
Page 1
SEF 1134
SEMESTER 1, 2O10/2011
QUESTION 5 [12 MARKS]
๐Ÿ๐’™๐Ÿ
Let ๐‘“(๐’™) = (๐Ÿ‘โˆ’๐’™)(๐Ÿ‘+๐’™)
a)
b)
c)
d)
e)
Find x and y-intercepts,
[1M]
Find all the asymptotes, if any,
[2M]
Identify the critical point(s) and intervals on which ๐‘“(๐‘ฅ) is increasing and decreasing, [2M]
Identify the inflection point (s) and intervals on which ๐‘“(๐‘ฅ) is concave up and down, [5M]
Use all the information obtained, sketch graph of ๐‘“(๐‘ฅ).
[2M]
QUESTION 6 [13MARKS]
(a) Find the critical numbers of the function ๐‘“(๐‘ฅ) = 6โˆš๐‘ฅ โˆ’ ๐‘ฅ โˆš๐‘ฅ
[5M]
(b) A metal storage with tank with volume V is to be constructed in the shape of a right circular
cylinder surmounted by a hemisphere. What dimensions will require the least amount of metal?
[8M]
QUESTION 7 [12 MARKS]
Evaluate the following integrals:
๐Ÿ‘ ๐’™๐Ÿ +๐Ÿ
(a) โˆซ๐Ÿ
๐œ‹
[3M]
โˆš๐’™๐Ÿ‘ +๐Ÿ‘๐’™
1
2
(b) โˆซ02 | โˆ’ sin ๐‘ฅ| ๐‘‘๐‘ฅ
(c) โˆซ
1
โˆš2๐œƒ+1 ๐‘’ โˆš2๐œƒ+1
[5M]
๐‘‘๐œƒ
[4M]
QUESTION 8 [8 MARKS]
Use definition
๐ด๐‘Ÿ๐‘’๐‘Ž = lim โˆ‘โˆž
๐‘˜=1 ๐‘“( ๐‘ฅ๐‘˜ ) โˆ†๐‘ฅ with ๐‘ฅ๐‘˜ as the right endpoint of each n subinterval
๐‘›โ†’โˆž
to find the area between the graph of ๐‘“(๐‘ฅ) = 2๐‘ฅ 2 and the interval [1,2].
DEPARTMENT OF MATHEMATICS
Page 2
SEF 1134
SEMESTER 1, 2O10/2011
QUESTION 9 [12 MARKS]
(a) Evaluate the definite integral
๐œ‹
โˆซ04 ๐‘ ๐‘–๐‘›3 ๐‘ฅ ๐‘ ๐‘–๐‘›2๐‘ฅ ๐‘‘๐‘ฅ
[5M]
(b) Evaluate the integral
โˆซ ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ ๐‘‘๐‘ฅ
[7M]
QUESTION 10 [13MARKS]
(a) Find the indefinite integral
โˆซ
2๐‘ฅ 2 +๐‘ฅ+2
๐‘ฅ(๐‘ฅโˆ’1)2
๐‘‘๐‘ฅ
[8M]
(b) Find the indefinite integral
โˆซ โˆš36 โˆ’ ๐‘ฅ 2 ๐‘‘๐‘ฅ
DEPARTMENT OF MATHEMATICS
[5M]
Page 3
SEF 1134
SEMESTER 1, 2O10/2011
LIST OF FORMULA
TRIGONOMETRIC IDENTITIES
sin ๐‘Ž sin ๐‘ =
1
[cos(๐‘Ž โˆ’ ๐‘) โˆ’ cos(๐‘Ž + ๐‘)]
2
cos ๐‘Ž cos ๐‘ =
1
[cos(๐‘Ž โˆ’ ๐‘) + cos(๐‘Ž + ๐‘)]
2
sin ๐‘Ž cos ๐‘ =
1
[sin(๐‘Ž โˆ’ ๐‘) + sin(๐‘Ž + ๐‘)]
2
1
1
sin ๐‘Ž + sin ๐‘ = 2 ๐‘ ๐‘–๐‘› (๐‘Ž + ๐‘) cos (๐‘Ž โˆ’ ๐‘)
2
2
1
1
sin ๐‘Ž โˆ’ sin ๐‘ = 2 ๐‘ ๐‘–๐‘› (๐‘Ž โˆ’ ๐‘) cos (๐‘Ž + ๐‘)
2
2
1
1
cos ๐‘Ž + cos ๐‘ = 2 ๐‘๐‘œ๐‘  (๐‘Ž + ๐‘) cos (๐‘Ž โˆ’ ๐‘)
2
2
1
1
cos ๐‘Ž โˆ’ cos ๐‘ = โˆ’2 ๐‘ ๐‘–๐‘› (๐‘Ž + ๐‘) sin (๐‘Ž โˆ’ ๐‘)
2
2
sin(๐‘Ž + ๐‘) = sin ๐‘Ž cos ๐‘ + cos ๐‘Ž sin ๐‘
sin(๐‘Ž โˆ’ ๐‘) = sin ๐‘Ž cos ๐‘ โˆ’ cos ๐‘Ž sin ๐‘
cos (๐‘Ž + ๐‘) = cos ๐‘Ž cos ๐‘ โˆ’ sin ๐‘Ž sin ๐‘
cos (๐‘Ž โˆ’ ๐‘) = cos ๐‘Ž cos ๐‘ + sin ๐‘Ž sin ๐‘
tan(๐‘Ž + ๐‘) =
tan(๐‘Ž) + tan(๐‘)
1 โˆ’ tan(๐‘Ž) tan(๐‘)
tan( ๐‘Ž โˆ’ ๐‘) =
tan(๐‘Ž) โˆ’ tan(๐‘)
1 + tan(๐‘Ž) tan(๐‘)
๐‘ ๐‘–๐‘›2 ๐‘Ž + ๐‘๐‘œ๐‘  2 ๐‘Ž = 1
๐‘ก๐‘Ž๐‘›2 ๐‘Ž + 1 = ๐‘ ๐‘’๐‘ 2 ๐‘Ž
1 + ๐‘๐‘œ๐‘ก 2 ๐‘Ž = ๐‘๐‘ ๐‘ 2 ๐‘Ž
cos (2๐‘Ž) = ๐‘๐‘œ๐‘  2 ๐‘Ž โˆ’ ๐‘ ๐‘–๐‘›2 ๐‘Ž
cos(2๐‘Ž) = 2๐‘๐‘œ๐‘  2 ๐‘Ž โˆ’ 1
cos(2๐‘Ž) = 1 โˆ’ 2 ๐‘ ๐‘–๐‘›2 ๐‘Ž
DEPARTMENT OF MATHEMATICS
sin(2๐‘Ž) = 2 sin ๐‘Ž cos ๐‘Ž
Page 4
SEF 1134
SEMESTER 1, 2O10/2011
TRIGONOMETRIC FUNCTIONS
DIFFERENTIATION FORMULA
d
๏›x๏ ๏€ฝ 1
dx
d ๏ƒฉ x r ๏€ซ1 ๏ƒน
r
2.
๏ƒช
๏ƒบ ๏€ฝ x ๏€จr ๏‚น ๏€ญ1๏€ฉ
dx ๏ƒซ r ๏€ซ 1๏ƒป
1.
๏› ๏
d u
du
3.
b ๏€ฝ b u ln b ๏ƒ—
dx
dx
d u
du
4.
e ๏€ฝ eu ๏ƒ—
dx
dx
d
๏›ln u ๏ ๏€ฝ 1 ๏ƒ— du
5.
dx
u dx
d
๏›log b u ๏ ๏€ฝ 1 ๏ƒ— du
6.
dx
u ln b dx
d
๏›sin x๏ ๏€ฝ cos x
7.
dx
d
๏›๏€ญ cos x๏ ๏€ฝ sin x
8.
dx
d
๏›tan x๏ ๏€ฝ sec 2 x
9.
dx
d
๏›๏€ญ cot x๏ ๏€ฝ csc 2 x
10.
dx
d
๏›sec x๏ ๏€ฝ sec x tan x
11.
dx
d
๏›๏€ญ csc x๏ ๏€ฝ csc x cot x
12.
dx
๏› ๏
DEPARTMENT OF MATHEMATICS
INTEGRATION FORMULA
๏ƒฒ dx ๏€ฝ x ๏€ซ C
x r ๏€ซ1
๏ƒฒ x dx ๏€ฝ r ๏€ซ 1 ๏€ซ C ๏€จr ๏‚น 1๏€ฉ
r
๏ƒฒ cos xdx ๏€ฝ sin x ๏€ซ C
๏ƒฒ sin xdx ๏€ฝ ๏€ญ cos x ๏€ซ C
๏ƒฒ sec xdx ๏€ฝ tan x ๏€ซ C
๏ƒฒ csc xdx ๏€ฝ ๏€ญ cot x ๏€ซ C
๏ƒฒ sec x tan xdx ๏€ฝ sec x ๏€ซ C
๏ƒฒ csc x cot xdx ๏€ฝ ๏€ญ csc x ๏€ซ C
๏ƒฒ csc xdx ๏€ฝ ln csc x ๏€ญ cot x ๏€ซ C
๏ƒฒ sec xdx ๏€ฝ ln sec x ๏€ซ tan x ๏€ซ C
2
2
Page 5
SEF 1134
SEMESTER 1, 2O10/2011
Reduction Formula
1
n ๏€ญ1
xdx ๏€ฝ ๏€ญ sin n ๏€ญ1 x cos x ๏€ซ
sin n ๏€ญ 2 xdx
๏ƒฒ
n
n
1
n ๏€ญ1
n
n ๏€ญ1
n๏€ญ2
๏ƒฒ cos xdx ๏€ฝ n cos x sin x ๏€ซ n ๏ƒฒ cos xdx
tan n ๏€ญ1 x
n
tan
xdx
๏€ฝ
๏€ญ ๏ƒฒ tan n ๏€ญ 2 xdx
๏ƒฒ
n ๏€ญ1
sec n ๏€ญ 2 x tan x n ๏€ญ 2
n
n๏€ญ2
๏ƒฒ sec xdx ๏€ฝ n ๏€ญ 1 ๏€ซ n ๏€ญ 1 ๏ƒฒ sec xdx
๏ƒฒ sin
n
INVERSE TRIGONOMETRIC FUNCTIONS FORMULAS
DIFFERENTIATION
d
1
du
[sin ๏€ญ1 u ] ๏€ฝ
dx
1 ๏€ญ u 2 dx
d
1
du
[cos ๏€ญ1 u ] ๏€ฝ ๏€ญ
dx
1 ๏€ญ u 2 dx
d
1 du
[tan ๏€ญ1 u ] ๏€ฝ
dx
1 ๏€ซ u 2 dx
d
1 du
[cot ๏€ญ1 u ] ๏€ฝ ๏€ญ
dx
1 ๏€ซ u 2 dx
d
1
du
[sec ๏€ญ1 u ] ๏€ฝ
dx
u u 2 ๏€ญ 1 dx
d
1
du
[csc ๏€ญ1 u ] ๏€ฝ ๏€ญ
dx
u u 2 ๏€ญ 1 dx
INTEGRATION
๏ƒฒa
๏ƒฒ
๏ƒฒu
2
1
1
u
du ๏€ฝ tan ๏€ญ1 ๏€ซ C
2
a
a
๏€ซu
1
a ๏€ญu
2
2
du ๏€ฝ sin ๏€ญ1
1
u ๏€ญa
2
2
du ๏€ฝ
u
๏€ซC
a
1
u
sec ๏€ญ1 ๏€ซ C
a
a
DEPARTMENT OF MATHEMATICS
Page 6
SEF 1134
SEMESTER 1, 2O10/2011
SOLUTIONS
Question 1
(๐‘ฅ โˆ’ 3)2 (3 โˆ’ 2๐‘ฅ 2 )3
๐‘ฅโ†’โˆ’โˆž (๐‘ฅ โˆ’ 3)4 (2๐‘ฅ 2 โˆ’ 1)4
lim
๐‘ฅ 2 (โˆ’2๐‘ฅ 2 )2
๐‘ฅโ†’โˆ’โˆž (๐‘ฅ)4 (2๐‘ฅ 2 )4
M1A1
= lim
โˆ’8๐‘ฅ 8
๐‘ฅโ†’โˆ’โˆž 16๐‘ฅ 8
lim
=
โˆ’8
16
=
โˆ’1
2
M1A1
Question 2
( ax ๏€ซ b ๏€ญ 2) ( ax ๏€ซ b ๏€ซ 2)
๏€ฝ1
x
x ๏‚ฎ0
( ax ๏€ซ b ๏€ซ 2)
lim
M1
(ax ๏€ซ b) ๏€ญ 4
๏€ฝ1
x
x ๏‚ฎ0
( ax ๏€ซ b ๏€ซ 2)
A1
for limit to exists, b ๏€ญ 4 ๏€ฝ 0
M1
lim
b๏€ฝ4
A1
ax
๏€ฝ1
x ๏‚ฎ 0 x ( ax ๏€ซ 4 ๏€ซ 2)
lim
a
4๏€ซ2
๏€ฝ1
a=4
DEPARTMENT OF MATHEMATICS
M1
A1
Page 7
SEF 1134
SEMESTER 1, 2O10/2011
Question 3
(a) y ๏€ฝ ln(sin 3 2 x)
dy (3 sin 2 2 x)( 2 cos 2 x) 6 cos 2 x
๏€ฝ
๏€ฝ
๏€ฝ 6 cot 2 x
dx
sin 2 x
sin 3 2 x
d2y
dx
3
2
M1A1
๏€ฝ 12 csc 2 2 x
A1
2
d2y
๏ƒฆ dy ๏ƒถ
๏€ซ ๏ƒง ๏ƒท ๏€ซ 36 = 3( ๏€ญ 12 csc 2 2 x) ๏€ซ (6 cot 2 x) 2 ๏€ซ 36
dx 2 ๏ƒจ dx ๏ƒธ
2๏ƒถ
๏ƒฆ
๏€ญ1 ๏ƒง 1 ๏€ญ x ๏ƒท
(b) cos
2๏ƒท
๏ƒง
= ๏€ญ 36(cot 2 2 x ๏€ซ 1) ๏€ซ 36 cot 2 2 x ๏€ซ 36
M1
= ๏€ญ 36 cot 2 2 x ๏€ญ 36 ๏€ซ 36 cot 2 2 x ๏€ซ 36 =0
A1
๏€ซ ln(tan y ) ๏€ฝ a
๏ƒจ1๏€ซ x ๏ƒธ
๏€ญ
M1
(๏€ญ2 x)(1 ๏€ซ x 2 ) ๏€ญ (1 ๏€ญ x 2 )( 2 x)
2 ๏ƒถ2
๏ƒฆ1๏€ญ x
๏ƒท
(1 ๏€ญ ๏ƒง
๏ƒง1๏€ซ x2 ๏ƒท
๏ƒจ
๏ƒธ
๏€จ1 ๏€ซ x 2 ๏€ฉ2
๏ƒฆ sec 2 y ๏ƒถ dy
๏ƒท
+ ๏ƒง
=0
๏ƒง tan y ๏ƒท dx
๏ƒจ
๏ƒธ
M1M1M1A1
๏ƒฆ ๏€ญ 4x ๏ƒถ
๏ƒถ dy
1
๏ƒง
๏ƒท ๏€ซ ๏ƒฆ๏ƒง
๏ƒท๏ƒท
๏€ฝ0
๏ƒง
2
2
๏ƒง
๏ƒท
๏ƒจ cos y sin y ๏ƒธ dx
(1 ๏€ซ x 2 ) 2 ๏€ญ (1 ๏€ญ x 2 ) 2 ๏ƒจ (1 ๏€ซ x ) ๏ƒธ
๏€ญ (1 ๏€ซ x 2 )
2
1๏€ซ x2
๏ƒฆ
๏ƒถ dy
1
๏ƒท๏ƒท ๏€ฝ 0
๏ƒจ cos y sin y ๏ƒธ dx
+ ๏ƒง๏ƒง
dy 2 sec y csc y
๏€ฝ
dx
1๏€ซ x2
DEPARTMENT OF MATHEMATICS
M1
A1
A1
Page 8
SEF 1134
SEMESTER 1, 2O10/2011
Question 4
y ๏€ฝ ae ๏€ญ2 x sin( x ๏€ซ b)
dy
๏€ฝ ๏€ญ2ae ๏€ญ 2 x sin( x ๏€ซ b) ๏€ซ ae ๏€ญ 2 x cos( x ๏€ซ b)
dx
M1M1A1
dy
= ๏€ญ 2 y ๏€ซ ae ๏€ญ2 x cos( x ๏€ซ b)
dx
d2y
dx 2
d2y
dx 2
d2y
dx 2
๏€ฝ ๏€ญ2
dy
๏€ญ 2ae ๏€ญ 2 x cos( x ๏€ซ b) ๏€ญ ae ๏€ญ 2 x sin( x ๏€ซ b)
dx
= ๏€ญ2
= ๏€ญ4
dy
๏ƒฆ dy
๏ƒถ
๏€ญ 2๏ƒง ๏€ซ 2 y ๏ƒท ๏€ญ y
dx
๏ƒจ dx
๏ƒธ
dy
๏€ญ 5y
dx
DEPARTMENT OF MATHEMATICS
M1A1
M1
A1
Page 9
SEF 1134
SEMESTER 1, 2O10/2011
Question 5
a) X-int: ๐‘ฆ = 0 โ‡’ 2๐‘ฅ 2 = 0 โ‡’ ๐‘ฅ = 0
y-int: ๐‘ฅ = 0 โ‡’ ๐‘ฆ = 0
A1
b) VA: ๐‘ฅ = 3, ๐‘ฅ = โˆ’3
HA: lim ๐‘“(๐‘ฅ) = โˆ’2 โ‡’ ๐‘ฆ = โˆ’2 ๐‘–๐‘  ๐‘‰๐ด
M1A1
๐‘ฅโ†’โˆž
36๐‘ฅ
c) ๐‘“ฬ (๐‘ฅ) = (๐‘ฅ2 โˆ’9)2
๐‘“ฬ (๐‘ฅ) = 0 โ‡’ 36๐‘ฅ โ‡’ ๐‘ฅ = 0
M1
๐ผ๐‘“ ๐‘ฅ < 0, ๐‘“ฬ (๐‘ฅ) < 0 โ‡’ ๐‘“ ๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘ ๐‘–๐‘›๐‘”
๐ผ๐‘“ ๐‘ฅ < 0, ๐‘“ฬ (๐‘ฅ) < 0 โ‡’ ๐‘“ ๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘ ๐‘–๐‘›๐‘”
The graph has one critical point (0,0).
d) ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) =
โˆ’108๐‘ฅ 2 โˆ’324
(๐‘ฅ 2 โˆ’9)3
M1
โˆ’108๐‘ฅ 2 โˆ’ 324 โ‰  0 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) โ‰  0 โ‡’ ๐‘›๐‘œ ๐‘–๐‘›๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘œ๐‘–๐‘›๐‘ก
For ๐‘ฅ < โˆ’3 ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) < 0 โ‡’ the graph concave down
For โˆ’3 < ๐‘ฅ < 3, ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) > 0 โ‡’ the graph concave up
For ๐‘ฅ > 3, ๐‘“ โ€ฒโ€ฒ (๐‘ฅ) < 0 โ‡’ the graph concave down
e) Graph
DEPARTMENT OF MATHEMATICS
A1
M1 A1
M1 A1
A2
Page 10
SEF 1134
SEMESTER 1, 2O10/2011
Question 6
(a)
๐‘“ฬ (๐‘ฅ) = ๐‘ฅ 3
4๐‘ฅ
๐‘“ฬ (๐‘ฅ) =
2๐‘ฅ
2โˆš๐‘ฅ 2 โˆ’3
+ 3๐‘ฅ 2 โˆš๐‘ฅ 2 โˆ’ 3 =
๐‘ฅ4
โˆš๐‘ฅ 2 โˆ’3
+ 3๐‘ฅ 2 โˆš๐‘ฅ 2 โˆ’ 3
M1
4 โˆ’9๐‘ฅ 2
โˆš๐‘ฅ 2 โˆ’3
2 (4๐‘ฅ 2
๐‘“ฬ (๐‘ฅ) = 0, ๐‘ฅ
๐‘ฅ = 0 ๐‘œ๐‘Ÿ ๐‘ฅ =
A1
โˆ’ 9) = 0
M1
3
โˆ“2
A1
๐‘ฅ 2 โˆ’ 3 = 0,
๐‘ฅ = โˆ“โˆš3
Critical points are: ๐‘ฅ = โˆ“โˆš3
A1
(b) 10 = (2๐‘ค)(๐‘ค). โ„Ž = 2๐‘ค 2 โ„Ž
โ„Ž=
M1
5
๐‘ค2
A1
The cost of material:
๐ถ = 10(2๐‘ค 2 ) + 6[2(2๐‘คโ„Ž) + 2โ„Ž๐‘ค] = 20๐‘ค 2 + 36๐‘คโ„Ž
5
)
๐‘ค2
๐ถ(๐‘ค) = 20๐‘ค 2 + 36๐‘ค (
= 20๐‘ค 2 +
M1
180
๐‘ค
A1
3
180
40๐‘ค โˆ’180
๐ถฬ (๐‘ค) = 40๐‘ค โˆ’ ๐‘ค 2 =
=0
๐‘ค2
40๐‘ค 3 โˆ’ 180 = 0
3
๐‘ค=โˆš
M1
9
2
A1
3
9
2
There is an absolute minimum for ๐‘ค = โˆš
3
3 9
Since ๐ถฬ (๐‘ค) < 0 for 0 < ๐‘ค < โˆš and ๐ถฬ (๐‘ค) > 0 for ๐‘ค >
2
9
2
โˆš
3
9
3
9
๐ถ (โˆš ) = 20(โˆš )2 +
2
2
180
3 9
โˆš
2
= $163.54
DEPARTMENT OF MATHEMATICS
M1A1
Page 11
SEF 1134
SEMESTER 1, 2O10/2011
Question 7
(a)
S1
M1
A1
(b)
๐œ‹
2
๐œ‹
๐œ‹
61
2
1
1
โˆซ | โˆ’ sin ๐‘ฅ| ๐‘‘๐‘ฅ = โˆซ โˆ’ sin ๐‘ฅ ๐‘‘๐‘ฅ + โˆซ ๐‘ ๐‘–๐‘›๐‘ฅ โˆ’ ๐‘‘๐‘ฅ ๐‘บ๐Ÿ ๐‘ด๐Ÿ
๐œ‹
2
2
2
0
0
6
๐œ‹
๐œ‹
6
1
1 2
= [ ๐‘ฅ + ๐‘๐‘œ๐‘ ๐‘ฅ] + [๐‘๐‘œ๐‘ ๐‘ฅ โˆ’ ๐‘ฅ] ๐‘จ๐Ÿ
2
2 ๐œ‹6
0
๐œ‹
๐œ‹
๐œ‹
๐œ‹
๐œ‹
= [( + ๐‘๐‘œ๐‘  6 ) โˆ’ 1] + [(โˆ’ ) โˆ’ (๐‘๐‘œ๐‘  6 โˆ’ )]
12
4
12
๐‘ด๐Ÿ
๐œ‹
= โˆ’1 โˆ’ 24 ๐‘จ๐Ÿ
(c)
โˆซ
1
โˆš2๐œƒ + 1 ๐‘’ โˆš2๐œƒ+1
๐‘‘๐œƒ
๐ฟ๐‘’๐‘ก ๐‘ข = โˆš2๐œƒ + 1 , ๐‘‘๐‘ข =
โˆดโˆซ
1
โˆš2๐œƒ + 1 ๐‘’ โˆš2๐œƒ+1
2
2โˆš2๐œƒ + 1
๐‘‘๐œƒ =
1
โˆš2๐œƒ + 1
๐‘‘๐œƒ ๐‘บ๐Ÿ ๐‘ด๐Ÿ
๐‘‘๐œƒ
โˆ’
= โˆซ ๐‘’ โˆ’๐‘ข ๐‘‘๐‘ข = โˆ’ ๐‘’ โˆš2๐œƒ+1 + ๐‘ ๐‘จ๐Ÿ ๐‘ด๐Ÿ
DEPARTMENT OF MATHEMATICS
Page 12
SEF 1134
SEMESTER 1, 2O10/2011
Question 8
โˆ†๐’™ =
2โˆ’1 1
= ,
๐‘›
๐‘›
๐‘ฅ๐‘˜ = 1 + ๐‘˜
1
๐‘›
๐‘บ๐Ÿ
โˆž
๐ด๐‘Ÿ๐‘’๐‘Ž = lim โˆ‘ ๐‘“( ๐‘ฅ๐‘˜ ) โˆ†๐‘ฅ
๐‘›โ†’โˆž
๐‘˜=1
๐‘›
โˆž
1 1
๐‘˜ 21
= lim โˆ‘ ๐‘“(1 + ๐‘˜ )
= lim โˆ‘ 2 (1 + )
๐‘›โ†’โˆž
๐‘›โ†’โˆž
๐‘› ๐‘›
๐‘› ๐‘›
๐‘˜=1
๐‘˜=1
= lim โˆ‘๐‘›๐‘˜=1 2 (1 +
๐‘›โ†’โˆž
= lim
2
๐‘›โ†’โˆž ๐‘›
๐‘ด๐Ÿ ๐‘จ๐Ÿ
2๐‘˜
๐‘›
๐‘˜2
+ ๐‘›2 )
2
1
๐‘›
๐‘ด๐Ÿ
1
2
[โˆ‘๐‘›๐‘˜=1 1 + ๐‘› โˆ‘๐‘›๐‘˜=1 ๐‘˜ + ๐‘›2 โˆ‘โˆž
๐‘˜=1 ๐‘˜ ] ๐‘ด๐Ÿ
2
2 ๐‘›(๐‘› + 1) 1 ๐‘›(๐‘› + 1)(2๐‘› + 1)
[๐‘› +
+ 2
] ๐‘ด๐Ÿ
๐‘›โ†’โˆž ๐‘›
๐‘›
2
๐‘›
6
= lim
= lim [2 +
๐‘›โ†’โˆž
4๐‘›(๐‘› + 1) 2๐‘›(๐‘› + 1)(2๐‘› + 1)
+
] ๐‘บ๐Ÿ
2๐‘›2
6๐‘›3
2
=2 + 2 + 3 =
14
3
๐‘จ๐Ÿ
Question 9
๐œ‹
(a) โˆซ04 ๐‘ ๐‘–๐‘›3 ๐‘ฅ ๐‘ ๐‘–๐‘›2๐‘ฅ ๐‘‘๐‘ฅ
๐œ‹
= โˆซ04 ๐‘ ๐‘–๐‘›2 ๐‘ฅ 2๐‘ ๐‘–๐‘›๐‘ฅ ๐‘๐‘œ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
M1
๐œ‹
4
= 2 โˆซ0 ๐‘ ๐‘–๐‘›3 ๐‘ฅ ๐‘๐‘œ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
A1
๐œ‹
1
Let u = sinx
x= 4
u=
du = cosx dx
x=0
u=0
= 2 โˆซ ๐‘ข3 ๐‘‘๐‘ข
1
=2
๐‘ข โˆš2
]
4 0
=
โˆš2
M1
A1
1
8
DEPARTMENT OF MATHEMATICS
A1
Page 13
SEF 1134
SEMESTER 1, 2O10/2011
(b) โˆซ ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ ๐‘‘๐‘ฅ
Let u= ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ
du= 2
1
โˆš๐‘ฅ(1+๐‘ฅ)
dv = dx
v=x
๐‘‘๐‘ฅ
โˆซ ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ ๐‘‘๐‘ฅ = ๐‘ฅ ๐‘ก๐‘Ž๐‘›โˆ’1 โˆ’
Let
t = โˆš๐‘ฅ
M1
1
2
โˆš๐‘ฅ
A1
โˆซ 1+๐‘ฅ ๐‘‘๐‘ฅ
M1
๐‘ก2 = ๐‘ฅ
2๐‘ก๐‘‘๐‘ก = ๐‘‘๐‘ฅ
๐‘ก2
๐‘ก
1
โˆซ 1+๐‘ก 2 2๐‘ก ๐‘‘๐‘ก = 2 โˆซ 1+๐‘ก 2 ๐‘‘๐‘ก = 2 [โˆซ ๐‘‘๐‘ก โˆ’ โˆซ 1+๐‘ก 2 ๐‘‘๐‘ก]
M1(long division)
= 2[๐‘ก โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ก] = 2[โˆš๐‘ฅ โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ]
M1
A1
Combining :
= ๐‘ฅ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ โˆ’ โˆš๐‘ฅ โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1 โˆš๐‘ฅ + ๐‘
A1
Question 10
(a) โˆซ
2๐‘ฅ 2 +๐‘ฅ+2
๐‘ฅ(๐‘ฅโˆ’1)2
๐ด
๐‘‘๐‘ฅ =
๐‘ฅ
๐ต
+ ๐‘ฅโˆ’1 +
๐ถ
S1
(๐‘ฅโˆ’1)2
2๐‘ฅ 2 + ๐‘ฅ + 2 = ๐ด(๐‘ฅ โˆ’ 1)2 + ๐ต๐‘ฅ(๐‘ฅ โˆ’ 1) + ๐ถ๐‘ฅ
A=2 , C=5, B=0
2๐‘ฅ 2 +๐‘ฅ+2
๐‘ฅ(๐‘ฅโˆ’1)2
=
2
M1
M1 A1(2 correct)
2
5
A1
+ (๐‘ฅโˆ’1)2
๐‘ฅ
5
= โˆซ ๐‘ฅ ๐‘‘๐‘ฅ + โˆซ (๐‘ฅโˆ’1)2 ๐‘‘๐‘ฅ
1
= 2๐‘™๐‘›๐‘ฅ + 5 โˆซ (๐‘ฅโˆ’1)2 ๐‘‘๐‘ฅ
M1
Let u = x-1
du = dx
1
1
โˆซ ๐‘ข2 ๐‘‘๐‘ข = โˆ’ ๐‘ข = โˆ’
โˆซ
2๐‘ฅ 2 +๐‘ฅ+2
๐‘ฅ(๐‘ฅโˆ’1)2
5
๐‘‘๐‘ฅ = 2 ln ๐‘ฅ โˆ’ ๐‘ฅโˆ’1 + ๐‘
DEPARTMENT OF MATHEMATICS
1
๐‘ฅโˆ’1
A1
A1
Page 14
SEF 1134
(b)
SEMESTER 1, 2O10/2011
โˆซ โˆš36 โˆ’ ๐‘ฅ 2 ๐‘‘๐‘ฅ
๐‘™๐‘’๐‘ก ๐‘ฅ = 6๐‘ ๐‘–๐‘›๐œƒ
๐‘‘๐‘ฅ = 6๐‘๐‘œ๐‘ ๐œƒ ๐‘‘๐œƒ
M1
โˆซ 6โˆš1 โˆ’ ๐‘ ๐‘–๐‘›2 ๐œƒ 6๐‘๐‘œ๐‘ ๐œƒ ๐‘‘๐œƒ
A1
1
1
= 36 โˆซ ๐‘๐‘œ๐‘  2 ๐œƒ๐‘‘๐œƒ = 18 [2 ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ + 2 ๐œƒ] + ๐‘
= 18 [
=
โˆš36โˆ’๐‘ฅ 2 ๐‘ฅ
6
๐‘ฅโˆš36โˆ’๐‘ฅ 2
2
๐‘ฅ
. 6 + ๐‘ ๐‘–๐‘›โˆ’1 (6)] + ๐‘
๐‘ฅ
+ 18 ๐‘ ๐‘–๐‘›โˆ’1 (6) + ๐‘
DEPARTMENT OF MATHEMATICS
- Reduction formula
M1
- Use triangle
A1
A1
Page 15