SEF 1134 SEMESTER 1, 2O10/2011 QUESTION 1 [4 MARKS] Find the limit: (๐ฅโ3)2 (3โ2๐ฅ 2 )3 ๐ฅโโโ (๐ฅโ3)4 (2๐ฅ 2 โ1)4 lim [4M ] QUESTION 2 [6 MARKS] ax ๏ซ b ๏ญ 2 ๏ฝ1 x x ๏ฎ0 Find numbers a and b such that lim [6M] QUESTION 3 [13 MARKS] (a) If y ๏ฝ ln(sin 3 2 x) , prove that 2๏ถ ๏ฆ ๏ญ1 ๏ง 1 ๏ญ x ๏ท (b) Given that cos 2๏ท ๏ง ๏จ1๏ซ x ๏ธ find 3 d2y 2 ๏ฆ dy ๏ถ ๏ซ ๏ง ๏ท ๏ซ 36 ๏ฝ 0 dx 2 ๏จ dx ๏ธ [6M] ๏ซ ln(tan y ) ๏ฝ a , where a is a constant , dy in terms of x and y . Give your answer in the simplest form dx [7M] QUESTION 4 [7 MARKS] Given that y ๏ฝ ae ๏ญ2 x sin( x ๏ซ b) , where a and b are constants. Find d2y dx 2 in terms of y and DEPARTMENT OF MATHEMATICS dy . dx [7M] Page 1 SEF 1134 SEMESTER 1, 2O10/2011 QUESTION 5 [12 MARKS] ๐๐๐ Let ๐(๐) = (๐โ๐)(๐+๐) a) b) c) d) e) Find x and y-intercepts, [1M] Find all the asymptotes, if any, [2M] Identify the critical point(s) and intervals on which ๐(๐ฅ) is increasing and decreasing, [2M] Identify the inflection point (s) and intervals on which ๐(๐ฅ) is concave up and down, [5M] Use all the information obtained, sketch graph of ๐(๐ฅ). [2M] QUESTION 6 [13MARKS] (a) Find the critical numbers of the function ๐(๐ฅ) = 6โ๐ฅ โ ๐ฅ โ๐ฅ [5M] (b) A metal storage with tank with volume V is to be constructed in the shape of a right circular cylinder surmounted by a hemisphere. What dimensions will require the least amount of metal? [8M] QUESTION 7 [12 MARKS] Evaluate the following integrals: ๐ ๐๐ +๐ (a) โซ๐ ๐ [3M] โ๐๐ +๐๐ 1 2 (b) โซ02 | โ sin ๐ฅ| ๐๐ฅ (c) โซ 1 โ2๐+1 ๐ โ2๐+1 [5M] ๐๐ [4M] QUESTION 8 [8 MARKS] Use definition ๐ด๐๐๐ = lim โโ ๐=1 ๐( ๐ฅ๐ ) โ๐ฅ with ๐ฅ๐ as the right endpoint of each n subinterval ๐โโ to find the area between the graph of ๐(๐ฅ) = 2๐ฅ 2 and the interval [1,2]. DEPARTMENT OF MATHEMATICS Page 2 SEF 1134 SEMESTER 1, 2O10/2011 QUESTION 9 [12 MARKS] (a) Evaluate the definite integral ๐ โซ04 ๐ ๐๐3 ๐ฅ ๐ ๐๐2๐ฅ ๐๐ฅ [5M] (b) Evaluate the integral โซ ๐ก๐๐โ1 โ๐ฅ ๐๐ฅ [7M] QUESTION 10 [13MARKS] (a) Find the indefinite integral โซ 2๐ฅ 2 +๐ฅ+2 ๐ฅ(๐ฅโ1)2 ๐๐ฅ [8M] (b) Find the indefinite integral โซ โ36 โ ๐ฅ 2 ๐๐ฅ DEPARTMENT OF MATHEMATICS [5M] Page 3 SEF 1134 SEMESTER 1, 2O10/2011 LIST OF FORMULA TRIGONOMETRIC IDENTITIES sin ๐ sin ๐ = 1 [cos(๐ โ ๐) โ cos(๐ + ๐)] 2 cos ๐ cos ๐ = 1 [cos(๐ โ ๐) + cos(๐ + ๐)] 2 sin ๐ cos ๐ = 1 [sin(๐ โ ๐) + sin(๐ + ๐)] 2 1 1 sin ๐ + sin ๐ = 2 ๐ ๐๐ (๐ + ๐) cos (๐ โ ๐) 2 2 1 1 sin ๐ โ sin ๐ = 2 ๐ ๐๐ (๐ โ ๐) cos (๐ + ๐) 2 2 1 1 cos ๐ + cos ๐ = 2 ๐๐๐ (๐ + ๐) cos (๐ โ ๐) 2 2 1 1 cos ๐ โ cos ๐ = โ2 ๐ ๐๐ (๐ + ๐) sin (๐ โ ๐) 2 2 sin(๐ + ๐) = sin ๐ cos ๐ + cos ๐ sin ๐ sin(๐ โ ๐) = sin ๐ cos ๐ โ cos ๐ sin ๐ cos (๐ + ๐) = cos ๐ cos ๐ โ sin ๐ sin ๐ cos (๐ โ ๐) = cos ๐ cos ๐ + sin ๐ sin ๐ tan(๐ + ๐) = tan(๐) + tan(๐) 1 โ tan(๐) tan(๐) tan( ๐ โ ๐) = tan(๐) โ tan(๐) 1 + tan(๐) tan(๐) ๐ ๐๐2 ๐ + ๐๐๐ 2 ๐ = 1 ๐ก๐๐2 ๐ + 1 = ๐ ๐๐ 2 ๐ 1 + ๐๐๐ก 2 ๐ = ๐๐ ๐ 2 ๐ cos (2๐) = ๐๐๐ 2 ๐ โ ๐ ๐๐2 ๐ cos(2๐) = 2๐๐๐ 2 ๐ โ 1 cos(2๐) = 1 โ 2 ๐ ๐๐2 ๐ DEPARTMENT OF MATHEMATICS sin(2๐) = 2 sin ๐ cos ๐ Page 4 SEF 1134 SEMESTER 1, 2O10/2011 TRIGONOMETRIC FUNCTIONS DIFFERENTIATION FORMULA d ๏x๏ ๏ฝ 1 dx d ๏ฉ x r ๏ซ1 ๏น r 2. ๏ช ๏บ ๏ฝ x ๏จr ๏น ๏ญ1๏ฉ dx ๏ซ r ๏ซ 1๏ป 1. ๏ ๏ d u du 3. b ๏ฝ b u ln b ๏ dx dx d u du 4. e ๏ฝ eu ๏ dx dx d ๏ln u ๏ ๏ฝ 1 ๏ du 5. dx u dx d ๏log b u ๏ ๏ฝ 1 ๏ du 6. dx u ln b dx d ๏sin x๏ ๏ฝ cos x 7. dx d ๏๏ญ cos x๏ ๏ฝ sin x 8. dx d ๏tan x๏ ๏ฝ sec 2 x 9. dx d ๏๏ญ cot x๏ ๏ฝ csc 2 x 10. dx d ๏sec x๏ ๏ฝ sec x tan x 11. dx d ๏๏ญ csc x๏ ๏ฝ csc x cot x 12. dx ๏ ๏ DEPARTMENT OF MATHEMATICS INTEGRATION FORMULA ๏ฒ dx ๏ฝ x ๏ซ C x r ๏ซ1 ๏ฒ x dx ๏ฝ r ๏ซ 1 ๏ซ C ๏จr ๏น 1๏ฉ r ๏ฒ cos xdx ๏ฝ sin x ๏ซ C ๏ฒ sin xdx ๏ฝ ๏ญ cos x ๏ซ C ๏ฒ sec xdx ๏ฝ tan x ๏ซ C ๏ฒ csc xdx ๏ฝ ๏ญ cot x ๏ซ C ๏ฒ sec x tan xdx ๏ฝ sec x ๏ซ C ๏ฒ csc x cot xdx ๏ฝ ๏ญ csc x ๏ซ C ๏ฒ csc xdx ๏ฝ ln csc x ๏ญ cot x ๏ซ C ๏ฒ sec xdx ๏ฝ ln sec x ๏ซ tan x ๏ซ C 2 2 Page 5 SEF 1134 SEMESTER 1, 2O10/2011 Reduction Formula 1 n ๏ญ1 xdx ๏ฝ ๏ญ sin n ๏ญ1 x cos x ๏ซ sin n ๏ญ 2 xdx ๏ฒ n n 1 n ๏ญ1 n n ๏ญ1 n๏ญ2 ๏ฒ cos xdx ๏ฝ n cos x sin x ๏ซ n ๏ฒ cos xdx tan n ๏ญ1 x n tan xdx ๏ฝ ๏ญ ๏ฒ tan n ๏ญ 2 xdx ๏ฒ n ๏ญ1 sec n ๏ญ 2 x tan x n ๏ญ 2 n n๏ญ2 ๏ฒ sec xdx ๏ฝ n ๏ญ 1 ๏ซ n ๏ญ 1 ๏ฒ sec xdx ๏ฒ sin n INVERSE TRIGONOMETRIC FUNCTIONS FORMULAS DIFFERENTIATION d 1 du [sin ๏ญ1 u ] ๏ฝ dx 1 ๏ญ u 2 dx d 1 du [cos ๏ญ1 u ] ๏ฝ ๏ญ dx 1 ๏ญ u 2 dx d 1 du [tan ๏ญ1 u ] ๏ฝ dx 1 ๏ซ u 2 dx d 1 du [cot ๏ญ1 u ] ๏ฝ ๏ญ dx 1 ๏ซ u 2 dx d 1 du [sec ๏ญ1 u ] ๏ฝ dx u u 2 ๏ญ 1 dx d 1 du [csc ๏ญ1 u ] ๏ฝ ๏ญ dx u u 2 ๏ญ 1 dx INTEGRATION ๏ฒa ๏ฒ ๏ฒu 2 1 1 u du ๏ฝ tan ๏ญ1 ๏ซ C 2 a a ๏ซu 1 a ๏ญu 2 2 du ๏ฝ sin ๏ญ1 1 u ๏ญa 2 2 du ๏ฝ u ๏ซC a 1 u sec ๏ญ1 ๏ซ C a a DEPARTMENT OF MATHEMATICS Page 6 SEF 1134 SEMESTER 1, 2O10/2011 SOLUTIONS Question 1 (๐ฅ โ 3)2 (3 โ 2๐ฅ 2 )3 ๐ฅโโโ (๐ฅ โ 3)4 (2๐ฅ 2 โ 1)4 lim ๐ฅ 2 (โ2๐ฅ 2 )2 ๐ฅโโโ (๐ฅ)4 (2๐ฅ 2 )4 M1A1 = lim โ8๐ฅ 8 ๐ฅโโโ 16๐ฅ 8 lim = โ8 16 = โ1 2 M1A1 Question 2 ( ax ๏ซ b ๏ญ 2) ( ax ๏ซ b ๏ซ 2) ๏ฝ1 x x ๏ฎ0 ( ax ๏ซ b ๏ซ 2) lim M1 (ax ๏ซ b) ๏ญ 4 ๏ฝ1 x x ๏ฎ0 ( ax ๏ซ b ๏ซ 2) A1 for limit to exists, b ๏ญ 4 ๏ฝ 0 M1 lim b๏ฝ4 A1 ax ๏ฝ1 x ๏ฎ 0 x ( ax ๏ซ 4 ๏ซ 2) lim a 4๏ซ2 ๏ฝ1 a=4 DEPARTMENT OF MATHEMATICS M1 A1 Page 7 SEF 1134 SEMESTER 1, 2O10/2011 Question 3 (a) y ๏ฝ ln(sin 3 2 x) dy (3 sin 2 2 x)( 2 cos 2 x) 6 cos 2 x ๏ฝ ๏ฝ ๏ฝ 6 cot 2 x dx sin 2 x sin 3 2 x d2y dx 3 2 M1A1 ๏ฝ 12 csc 2 2 x A1 2 d2y ๏ฆ dy ๏ถ ๏ซ ๏ง ๏ท ๏ซ 36 = 3( ๏ญ 12 csc 2 2 x) ๏ซ (6 cot 2 x) 2 ๏ซ 36 dx 2 ๏จ dx ๏ธ 2๏ถ ๏ฆ ๏ญ1 ๏ง 1 ๏ญ x ๏ท (b) cos 2๏ท ๏ง = ๏ญ 36(cot 2 2 x ๏ซ 1) ๏ซ 36 cot 2 2 x ๏ซ 36 M1 = ๏ญ 36 cot 2 2 x ๏ญ 36 ๏ซ 36 cot 2 2 x ๏ซ 36 =0 A1 ๏ซ ln(tan y ) ๏ฝ a ๏จ1๏ซ x ๏ธ ๏ญ M1 (๏ญ2 x)(1 ๏ซ x 2 ) ๏ญ (1 ๏ญ x 2 )( 2 x) 2 ๏ถ2 ๏ฆ1๏ญ x ๏ท (1 ๏ญ ๏ง ๏ง1๏ซ x2 ๏ท ๏จ ๏ธ ๏จ1 ๏ซ x 2 ๏ฉ2 ๏ฆ sec 2 y ๏ถ dy ๏ท + ๏ง =0 ๏ง tan y ๏ท dx ๏จ ๏ธ M1M1M1A1 ๏ฆ ๏ญ 4x ๏ถ ๏ถ dy 1 ๏ง ๏ท ๏ซ ๏ฆ๏ง ๏ท๏ท ๏ฝ0 ๏ง 2 2 ๏ง ๏ท ๏จ cos y sin y ๏ธ dx (1 ๏ซ x 2 ) 2 ๏ญ (1 ๏ญ x 2 ) 2 ๏จ (1 ๏ซ x ) ๏ธ ๏ญ (1 ๏ซ x 2 ) 2 1๏ซ x2 ๏ฆ ๏ถ dy 1 ๏ท๏ท ๏ฝ 0 ๏จ cos y sin y ๏ธ dx + ๏ง๏ง dy 2 sec y csc y ๏ฝ dx 1๏ซ x2 DEPARTMENT OF MATHEMATICS M1 A1 A1 Page 8 SEF 1134 SEMESTER 1, 2O10/2011 Question 4 y ๏ฝ ae ๏ญ2 x sin( x ๏ซ b) dy ๏ฝ ๏ญ2ae ๏ญ 2 x sin( x ๏ซ b) ๏ซ ae ๏ญ 2 x cos( x ๏ซ b) dx M1M1A1 dy = ๏ญ 2 y ๏ซ ae ๏ญ2 x cos( x ๏ซ b) dx d2y dx 2 d2y dx 2 d2y dx 2 ๏ฝ ๏ญ2 dy ๏ญ 2ae ๏ญ 2 x cos( x ๏ซ b) ๏ญ ae ๏ญ 2 x sin( x ๏ซ b) dx = ๏ญ2 = ๏ญ4 dy ๏ฆ dy ๏ถ ๏ญ 2๏ง ๏ซ 2 y ๏ท ๏ญ y dx ๏จ dx ๏ธ dy ๏ญ 5y dx DEPARTMENT OF MATHEMATICS M1A1 M1 A1 Page 9 SEF 1134 SEMESTER 1, 2O10/2011 Question 5 a) X-int: ๐ฆ = 0 โ 2๐ฅ 2 = 0 โ ๐ฅ = 0 y-int: ๐ฅ = 0 โ ๐ฆ = 0 A1 b) VA: ๐ฅ = 3, ๐ฅ = โ3 HA: lim ๐(๐ฅ) = โ2 โ ๐ฆ = โ2 ๐๐ ๐๐ด M1A1 ๐ฅโโ 36๐ฅ c) ๐ฬ (๐ฅ) = (๐ฅ2 โ9)2 ๐ฬ (๐ฅ) = 0 โ 36๐ฅ โ ๐ฅ = 0 M1 ๐ผ๐ ๐ฅ < 0, ๐ฬ (๐ฅ) < 0 โ ๐ ๐๐๐๐๐๐๐ ๐๐๐ ๐ผ๐ ๐ฅ < 0, ๐ฬ (๐ฅ) < 0 โ ๐ ๐๐๐๐๐๐๐ ๐๐๐ The graph has one critical point (0,0). d) ๐ โฒโฒ (๐ฅ) = โ108๐ฅ 2 โ324 (๐ฅ 2 โ9)3 M1 โ108๐ฅ 2 โ 324 โ 0 ๐ โฒโฒ (๐ฅ) โ 0 โ ๐๐ ๐๐๐๐๐๐๐ก๐๐๐ ๐๐๐๐๐ก For ๐ฅ < โ3 ๐ โฒโฒ (๐ฅ) < 0 โ the graph concave down For โ3 < ๐ฅ < 3, ๐ โฒโฒ (๐ฅ) > 0 โ the graph concave up For ๐ฅ > 3, ๐ โฒโฒ (๐ฅ) < 0 โ the graph concave down e) Graph DEPARTMENT OF MATHEMATICS A1 M1 A1 M1 A1 A2 Page 10 SEF 1134 SEMESTER 1, 2O10/2011 Question 6 (a) ๐ฬ (๐ฅ) = ๐ฅ 3 4๐ฅ ๐ฬ (๐ฅ) = 2๐ฅ 2โ๐ฅ 2 โ3 + 3๐ฅ 2 โ๐ฅ 2 โ 3 = ๐ฅ4 โ๐ฅ 2 โ3 + 3๐ฅ 2 โ๐ฅ 2 โ 3 M1 4 โ9๐ฅ 2 โ๐ฅ 2 โ3 2 (4๐ฅ 2 ๐ฬ (๐ฅ) = 0, ๐ฅ ๐ฅ = 0 ๐๐ ๐ฅ = A1 โ 9) = 0 M1 3 โ2 A1 ๐ฅ 2 โ 3 = 0, ๐ฅ = โโ3 Critical points are: ๐ฅ = โโ3 A1 (b) 10 = (2๐ค)(๐ค). โ = 2๐ค 2 โ โ= M1 5 ๐ค2 A1 The cost of material: ๐ถ = 10(2๐ค 2 ) + 6[2(2๐คโ) + 2โ๐ค] = 20๐ค 2 + 36๐คโ 5 ) ๐ค2 ๐ถ(๐ค) = 20๐ค 2 + 36๐ค ( = 20๐ค 2 + M1 180 ๐ค A1 3 180 40๐ค โ180 ๐ถฬ (๐ค) = 40๐ค โ ๐ค 2 = =0 ๐ค2 40๐ค 3 โ 180 = 0 3 ๐ค=โ M1 9 2 A1 3 9 2 There is an absolute minimum for ๐ค = โ 3 3 9 Since ๐ถฬ (๐ค) < 0 for 0 < ๐ค < โ and ๐ถฬ (๐ค) > 0 for ๐ค > 2 9 2 โ 3 9 3 9 ๐ถ (โ ) = 20(โ )2 + 2 2 180 3 9 โ 2 = $163.54 DEPARTMENT OF MATHEMATICS M1A1 Page 11 SEF 1134 SEMESTER 1, 2O10/2011 Question 7 (a) S1 M1 A1 (b) ๐ 2 ๐ ๐ 61 2 1 1 โซ | โ sin ๐ฅ| ๐๐ฅ = โซ โ sin ๐ฅ ๐๐ฅ + โซ ๐ ๐๐๐ฅ โ ๐๐ฅ ๐บ๐ ๐ด๐ ๐ 2 2 2 0 0 6 ๐ ๐ 6 1 1 2 = [ ๐ฅ + ๐๐๐ ๐ฅ] + [๐๐๐ ๐ฅ โ ๐ฅ] ๐จ๐ 2 2 ๐6 0 ๐ ๐ ๐ ๐ ๐ = [( + ๐๐๐ 6 ) โ 1] + [(โ ) โ (๐๐๐ 6 โ )] 12 4 12 ๐ด๐ ๐ = โ1 โ 24 ๐จ๐ (c) โซ 1 โ2๐ + 1 ๐ โ2๐+1 ๐๐ ๐ฟ๐๐ก ๐ข = โ2๐ + 1 , ๐๐ข = โดโซ 1 โ2๐ + 1 ๐ โ2๐+1 2 2โ2๐ + 1 ๐๐ = 1 โ2๐ + 1 ๐๐ ๐บ๐ ๐ด๐ ๐๐ โ = โซ ๐ โ๐ข ๐๐ข = โ ๐ โ2๐+1 + ๐ ๐จ๐ ๐ด๐ DEPARTMENT OF MATHEMATICS Page 12 SEF 1134 SEMESTER 1, 2O10/2011 Question 8 โ๐ = 2โ1 1 = , ๐ ๐ ๐ฅ๐ = 1 + ๐ 1 ๐ ๐บ๐ โ ๐ด๐๐๐ = lim โ ๐( ๐ฅ๐ ) โ๐ฅ ๐โโ ๐=1 ๐ โ 1 1 ๐ 21 = lim โ ๐(1 + ๐ ) = lim โ 2 (1 + ) ๐โโ ๐โโ ๐ ๐ ๐ ๐ ๐=1 ๐=1 = lim โ๐๐=1 2 (1 + ๐โโ = lim 2 ๐โโ ๐ ๐ด๐ ๐จ๐ 2๐ ๐ ๐2 + ๐2 ) 2 1 ๐ ๐ด๐ 1 2 [โ๐๐=1 1 + ๐ โ๐๐=1 ๐ + ๐2 โโ ๐=1 ๐ ] ๐ด๐ 2 2 ๐(๐ + 1) 1 ๐(๐ + 1)(2๐ + 1) [๐ + + 2 ] ๐ด๐ ๐โโ ๐ ๐ 2 ๐ 6 = lim = lim [2 + ๐โโ 4๐(๐ + 1) 2๐(๐ + 1)(2๐ + 1) + ] ๐บ๐ 2๐2 6๐3 2 =2 + 2 + 3 = 14 3 ๐จ๐ Question 9 ๐ (a) โซ04 ๐ ๐๐3 ๐ฅ ๐ ๐๐2๐ฅ ๐๐ฅ ๐ = โซ04 ๐ ๐๐2 ๐ฅ 2๐ ๐๐๐ฅ ๐๐๐ ๐ฅ ๐๐ฅ M1 ๐ 4 = 2 โซ0 ๐ ๐๐3 ๐ฅ ๐๐๐ ๐ฅ ๐๐ฅ A1 ๐ 1 Let u = sinx x= 4 u= du = cosx dx x=0 u=0 = 2 โซ ๐ข3 ๐๐ข 1 =2 ๐ข โ2 ] 4 0 = โ2 M1 A1 1 8 DEPARTMENT OF MATHEMATICS A1 Page 13 SEF 1134 SEMESTER 1, 2O10/2011 (b) โซ ๐ก๐๐โ1 โ๐ฅ ๐๐ฅ Let u= ๐ก๐๐โ1 โ๐ฅ du= 2 1 โ๐ฅ(1+๐ฅ) dv = dx v=x ๐๐ฅ โซ ๐ก๐๐โ1 โ๐ฅ ๐๐ฅ = ๐ฅ ๐ก๐๐โ1 โ Let t = โ๐ฅ M1 1 2 โ๐ฅ A1 โซ 1+๐ฅ ๐๐ฅ M1 ๐ก2 = ๐ฅ 2๐ก๐๐ก = ๐๐ฅ ๐ก2 ๐ก 1 โซ 1+๐ก 2 2๐ก ๐๐ก = 2 โซ 1+๐ก 2 ๐๐ก = 2 [โซ ๐๐ก โ โซ 1+๐ก 2 ๐๐ก] M1(long division) = 2[๐ก โ ๐ก๐๐โ1 ๐ก] = 2[โ๐ฅ โ ๐ก๐๐โ1 โ๐ฅ] M1 A1 Combining : = ๐ฅ๐ก๐๐โ1 โ๐ฅ โ โ๐ฅ โ ๐ก๐๐โ1 โ๐ฅ + ๐ A1 Question 10 (a) โซ 2๐ฅ 2 +๐ฅ+2 ๐ฅ(๐ฅโ1)2 ๐ด ๐๐ฅ = ๐ฅ ๐ต + ๐ฅโ1 + ๐ถ S1 (๐ฅโ1)2 2๐ฅ 2 + ๐ฅ + 2 = ๐ด(๐ฅ โ 1)2 + ๐ต๐ฅ(๐ฅ โ 1) + ๐ถ๐ฅ A=2 , C=5, B=0 2๐ฅ 2 +๐ฅ+2 ๐ฅ(๐ฅโ1)2 = 2 M1 M1 A1(2 correct) 2 5 A1 + (๐ฅโ1)2 ๐ฅ 5 = โซ ๐ฅ ๐๐ฅ + โซ (๐ฅโ1)2 ๐๐ฅ 1 = 2๐๐๐ฅ + 5 โซ (๐ฅโ1)2 ๐๐ฅ M1 Let u = x-1 du = dx 1 1 โซ ๐ข2 ๐๐ข = โ ๐ข = โ โซ 2๐ฅ 2 +๐ฅ+2 ๐ฅ(๐ฅโ1)2 5 ๐๐ฅ = 2 ln ๐ฅ โ ๐ฅโ1 + ๐ DEPARTMENT OF MATHEMATICS 1 ๐ฅโ1 A1 A1 Page 14 SEF 1134 (b) SEMESTER 1, 2O10/2011 โซ โ36 โ ๐ฅ 2 ๐๐ฅ ๐๐๐ก ๐ฅ = 6๐ ๐๐๐ ๐๐ฅ = 6๐๐๐ ๐ ๐๐ M1 โซ 6โ1 โ ๐ ๐๐2 ๐ 6๐๐๐ ๐ ๐๐ A1 1 1 = 36 โซ ๐๐๐ 2 ๐๐๐ = 18 [2 ๐๐๐ ๐๐ ๐๐๐ + 2 ๐] + ๐ = 18 [ = โ36โ๐ฅ 2 ๐ฅ 6 ๐ฅโ36โ๐ฅ 2 2 ๐ฅ . 6 + ๐ ๐๐โ1 (6)] + ๐ ๐ฅ + 18 ๐ ๐๐โ1 (6) + ๐ DEPARTMENT OF MATHEMATICS - Reduction formula M1 - Use triangle A1 A1 Page 15
© Copyright 2026 Paperzz