Nonlinearity Estimation for Efficient Resource Allocation in Elastic Optical Networks RuiWang,Sarvesh Bidkar,RezaNejabati andDimitraSimeonidou HighPerformanceNetworksGroup,UniversityofBristol High Performance Networks Group Outline • Motivation • Currentsolutionofnonlinearityanalysis • Proposedhybridnonlinearitymodel • Nonlinearityawareresourceallocation algorithm • Results • Conclusion High Performance Networks Group 2 Motivation • Opticallinkintroducepenaltieswhichaffectconnections quality. ROADM Capacity Reach Distance ROADM BER Transponder Transponder Optical Link Easy to compensate Linear Impairments: Nonlinear Impairments: Attenuation CD PMD PDL Crosstalk High Performance Networks Group SPM XPM FWM SBS SRS Difficult to mitigate 3 ExistingMethodtoUseNonlinearityInformation Worst-case or known as reference margin (RM) method 16.2 Cons: Sacrifice network performance when the network not in worst case. 16 15.8 Channel SNR based on real nonlinearity 15.6 15.4 SNR Pros: Easy to implement/calculate. Does not require complex model or expensive nonlinear impairments monitoring techniques. 16 QAM SNR Requirement 15.2 15 Channel SNR based on worst case 14.8 14.6 14.4 0 10 20 30 40 50 60 70 80 90 100 Channel Index High Performance Networks Group 4 ExistingMethodtoUseNonlinearityInformation Accurate nonlinearity information Pros: More accurate information, improve network performance if traffic matrix pre-known. Cons: Computational complex model, expensive monitoring hardware. May block the future requests when traffic matrix unknown. High Performance Networks Group § § Existing channel New channel 16QAM QAMSNR SNR 16 Requirement Requirement 5 EffectsofTwoNonlinearityAnalysisMethods Worst-case/reference margin method has much better performance in terms of blocking ratio. This is due to inter-channel blocking problem. High Performance Networks Group 6 HybridNonlinearityModel • Hybridnonlinearitymodel – Step-wisemarginbasedonassignedspectrumindexandlinkoccupancy condition. – 5loadingstatesofcontinuouschanneloccupancywithinanopticallinkas 20%,40%,60%,80%or100%occupiedassumedinourwork. – Nonlinearityarecalculatedbasedonabove5loadingstatesinadvanced. – Nointer-channelblockingforaddingnewlightpath whenthelinkremains withinsameloadingstate. ( ∑ . Thus𝑃"#$ = 𝑃&' 𝛽 +,-,. +,. :nonlinearcoefficientoflink𝑙,frequencyindex𝑚 andloadingstate𝑛 𝛽+,- 𝑃&' :lauch powerofonefrequencyslot High Performance Networks Group 7 HybridNonlinearityModelPerformance • SequentialloadedEON: • Upto130more100Grequestsusingcongestion-awarerouting • Upto100moremixedtrafficrequestsincongestion-awarerouting • Stillbetterperformanceundertwotrafficmodelusingshortestpath routing. High Performance Networks Group 8 HybridNonlinearityModelPerformance • Usinghybridnonlinearitymodeltendstoutilizemorehigh modulationformatsthanconservativereferencemargin (RM)method. High Performance Networks Group 9 NARAAlgorithmFlowchart Newrequest Yes No Temporallyacceptservices No Blockingexistingservices? yes yes Calculateend-to-endSNRbasedon yes HNmodelfori-thpath Assignproperspectrumand modulationformatbasedonfirstfit No Assignmentsuccessful? Serviceconfigurationalgorithm No Reconfiguration temporallysuccess? yes yes yes DoesReplanningblock otherservices? No Costcalculation SetcostINFINITY Choosethepathwithminimalcost High Performance Networks Group No Reconfigurationfail Permanentlyacceptrequest Blockrequest Updateresourcespool& loadingstates Verificationandreconfiguration Serviceconfigurationalgorithm FindKleastcongestedpaths Anypathleft? MinimalcostisINFINITY? 10 AssumptionandNetworkModel • Transparentdual-polarizationopticalsystemusingcoherent detectionwithoutinlinecompensation. • RectangleNyquistspectrumshapeandnoguardband. • Nonlinearityaccumulatesincoherentlyalongspans. • EqualtransmissionPSDamongdifferentchannels. • PowerlossiscompletelycompensatedbyEDFA. • Bandwidthvariableandmodulationformatadaptable transceiversbeingdeployed. • ThetrafficrequestsincludeFECoverhead. High Performance Networks Group 11 SimulationEnvironment • 12.5GHzgridopticalsystemdeployedSMF. • NSFNETtopologywith80km/span • 100Gbps requestsandmixedline-ratetrafficrequests(10 Gbps – 400Gbps ). • Pre-FECBERthreshold:4×107( . • Interval time of traffic requests: Poisson distribution • Service holding time: exponentially distributed 1 1520 2 12 880 3520 2160 1440 4 880 1040 2640 High Performance Networks Group 5 1120 1840 3 11 2960 6 7 1040 1200 8 9 1280 2480 1520 1040 560 560 640 14 13 400 10 12 NARAPerformanceResults Benchmark: shortest path routing, first fit spectrum allocation and reference margin method for nonlinearity estimation. NARA algorithm achieves between 5% to 15% higher service acceptance ratio than the benchmark method. High Performance Networks Group 13 NARAPerformanceResults Service average holding time to be 8000 time units NARA experiences 5-10% less blocking compared to benchmark for 100 Gbps traffic request and approximate 5% improvement for mixed line-rate requests. High Performance Networks Group 14 NARAPerformanceResults 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 Averageutilization, NARA Averageutilization, Benchmark 2000 3000 4000 5000 6000 7000 8000 Average Holding Time (units) 0,95 Network Spectrum Utilization Network Spectrum Utilization 0,95 100Gbpsrequests Mixedrequests 0,9 0,85 0,8 0,75 0,7 0,65 Averageutilization, NARA Averageutilization, Benchmark 0,6 0,55 0,5 2000 3000 4000 5000 6000 7000 8000 Average Holding Time (units) Spectrum utilization after 10000 service demands. NARA is able to achieve: 4% to 7% more network spectrum utilization for 100 Gbps requests. Approximate 6% more network spectrum utilization for mixed requests. High Performance Networks Group 15 NARAPerformanceResults Lesscongested network Mixed traffic request: • • Atleast4%improvementfor allscenarios. Smallserviceholdingtime: moreadvantagesforlarge trafficrequests(100Gbps and 400Gbps),11%- 13%higher Largeserviceholdingtime: moreadvantagesforsmall trafficrequests(10Gbps and 40Gbps),7%- 9%. 14,00 Improvement in number of accepted requests (%) • Morecongested network 12,00 10,00 8,00 6,00 4,00 2,00 0,00 2000 3000 5000 6000 7000 Average holding time 10 G requests 100 G requests High Performance Networks Group 4000 8000 40 G requests 400 G requests 16 Conclusion • Hybridnonlinearitymodelissimpleandaccurate. • TheNARAalgorithmusinghybridnonlinearitymodel significantlyimprovesnetworkserviceacceptanceratio. • NARAusinghybridnonlinearitymodelachieveshigher spectralefficiencyandhighernetworkutilization. • NARAfavoursdifferenttraffictypesdependingonnetwork congestionstatus. High Performance Networks Group 17 Thankyou. Anyquestion? High Performance Networks Group LARASolutionShowcase Before deploying future services After deploying services N+1,... Fig. a Fig. b ROADM C ROADM C Service N (blocked) Service N(16QAM) ROADM A 18 spans ROADM B Service N+1,... 18 spans ROADM A Service N SNR based on HN Service N NLI estimation based on HN ROADM B Service N SNR based on HN Service N NLI estimation based on HN Reconfigure service N Fig. c End-to-end SNR: 10.5 dB Service N (QPSK) Link 2 NLI estimation based on HN Link 1 NLI estimation based on HN ROADM C Service N+1,... ROADM A High Performance Networks Group ROADM B 19 Contribution • Wedevelopastep-wiseload-awarenonlinearitymodel. • Moreaccuratethantheworst-case/referencemargin scenario. • Computational High Performance Networks Group 20
© Copyright 2026 Paperzz