MIME 3380, Modeling and Control of Engineering Systems
Homework 5: Due Monday Feb 20, 2012
1. Problem 4.2 on page 126 of your text. Use Simulink to simulate this system. (Outputs required,if
this needs to be said!)
No real simulation problems expected!
2. Problem 4.15 on page 130 of your book.
J p J p0 2 sin cos m p gl sin 0
Assuming small angles ( near 0), sin
0 2
mp
Jp
gl
0
d
m
p
gl 0 2
dt
J p
I A 0
m
p gl 2
0
J p
0 2
cos 1
mp
Jp
1
0
1
mp
2
gl 0 2 0
Jp
gl
0 2
mp
Jp
gl positive is unstable for all 0
The other equilibrium point is for the pendulum to be hanging:
Let where is a small angle
0 2 sin cos
mp
Jp
gl sin
sin sin cos sin cos
cos cos cos sin sin 1
m
m
d
0 2 p gl 0 2 p gl
dt
Jp
J p
The solution of y cy c , the form of the ODE above, is
y
1
e
2
ct
e
ct
mp
Thus the system is stable under the condition that 0 2
gl 0, Otherwise it is unstable
J p
Plotting
m
d
0 2 p gl =0 with 0 varied leads to the bifurcation diagram given
dt
J
p
3. Problem 5.4 on page 164 of your book.
0
Exp
d
d e t cos d t e t sin d t
t
?
0 e t sin d t e t cos d t
0
0
0
0
t
t
t
t
d e 0 cos d t e 0 sin d t 0 e 0 cos d e 0 d sin d t
dt e 0t sin d t e 0t cos d t 0 e 0t sin d t e 0td cos d t
0
d
d e t cos d t e t sin d t
0 e t sin d t e t cos d t
d At
e Ae At QED
dt
4. Problem 5.9 on page 166 of your book.
0e0t sin d t e 0td cos d t
0e 0t cos d e 0td sin d t
0
0
0
0
a
a
Eigenvalues of
:
ab b ab
a a
a
0 a
I A
a ab ab a 2b 0
0 ab b ab b ab ab
2 a ab ab a 2b 0
a ab 1
a ab
2
4 ab a 2b
a ab 1
2
For <1:
2
a ab 1
a 2 1 6b b 2 4ab 1 a ab a 2 1 6b b 2 4ab 2
2
a ab
2
2
a 2 1 6b b 2 4ab
2
1 2
a 1 6b b 2 4ab 1 a ab a 2 1 6b b 2 4ab 2
2
2
2(a ab) 4 a (1 b) 2
c=
Modeling the problem in Matlab to explore
a 10% government spending requirement:
a = 0.2500
b =0.5000
A=
0.2500 0.2500
-0.3750 0.1250
B=
0.2500
0.1250
C=
1 1
D=1
>> sys=ss(A,B,C,D,1) %Note: building a
discrete model
x1 x2
y1 1 1
d=
u1
y1 1
Sampling time (seconds): 1
Discrete-time state-space model.
>> step(0.1*sys)
>> title('Keysian Economic Model, a=0.25, b
= 0.5, G=10%')
>> grid
>> xlabel('Time in years (Ignore step output
"seconds")')
>> ylabel('Output in $')
a=
x1 x2
x1 0.25 0.25
x2 -0.375 0.125
b=
u1
x1 0.25
x2 0.125
>
© Copyright 2026 Paperzz