Non-relativistic effective theory approach to dark matter direct and indirect detection Riccardo Catena Chalmers University of Technology, Gothenburg (Sweden) July 19, 2016 Outline I Introduction I Effective theory of dark matter-nucleon interactions (Fitzpatrick et. al, 2013) I Comparison with observations: R. Catena, A. Ibarra, S. Wild, JCAP 1605, 05, 039 (2016) R. Catena and P. Gondolo, JCAP 1508, 08, 022 (2015) R. Catena, JCAP 1507 07, 026 (2015) R. Catena, JCAP 1409, 09, 049 (2014) R. Catena, JCAP 1407, 07, 055 (2014) R. Catena, JCAP 1504 04, 052 (2015) R. Catena and P. Gondolo, JCAP 1409, 09, 045 (2014) R. Catena and B. Schwabe JCAP 1504 04, 042 (2015) Direct Detection Indirect Detection Dark matter direct detection / physical observables I Rate of dark matter-nucleus scattering events: X ρχ dR = ξT dER mT 6 mχ T Z f (v + ve (t)) v 1 v >vmin (q) galactic distribution dσT 2 2 3 (v , q ) d v dER @ I @ @ particle nature I Modulation amplitude: A(E− , E+ ) = 1 1h R(E− , E+ ) E+ − E− 2 June 1st − R(E− , E+ ) i Dec 1st Dark matter-nucleus scattering cross-section I Standard paradigm: spin-independent and spin-dependent dark matter-nucleon interactions A 2 X X mT dσT e −iq·ri (HSI + HSD ) |I i = | hF 2 1 dER 2πv [jχ ][JT ] spins i=1 nucleus ⊗ DM state 6 one-body DM-nucleon interaction Spin-independent interaction HSI I Scalar/Scalar coupling: LSS = 1 Λ3 P q CqSS χ̄χmq q̄q I S-matrix element: hf |iS|ii = −i ūχ (p 0 )uχ (p) Z d 4 x e i qx hN 0 | X cq q̄(x)q(x)|Ni q ' −i(2π)4 δ 4 (q − k 0 + k) ξχ0† ξχ ξN0† (b0 + b1 τ3 )ξN I Underlying non-relativistic Hamiltonian HSI = X τ =0,1 bτ 1χ 1N t τ ≡ X τ =0,1 c1τ 1χN t τ Spin-dependent interaction HSD I Axial-Vector/Axial-Vector: LAA = 1 Λ2 P q CqAA χ̄γ µ γ5 χq̄γµ γ5 q I S-matrix element: hf |iS|ii = −i ūχ (p 0 )γµ γ5 uχ (p) Z d 4 x e i qx hN 0 | X cq q̄(x)γ µ γ5 q(x)|Ni q 4 4 0 ' −i(2π) δ (q − k + k) ξχ0† σχ ξχ · ξN0† (a0 + a1 τ3 )σN ξN I Underlying non-relativistic Hamiltonian HSD = X τ =0,1 aτ σχ · σN t τ ≡ X τ =0,1 c4τ Ŝχ · ŜN t τ Effective Theory (ET) of dark matter-nucleon interactions I It relies on a separation of scales: |q|/mV 1, where mV is the mediator mass I The most general Hamiltonian for χ-N interactions is a power series in q̂/mV . Each term in the series preserves 3 fundamental symmetries, and is a combination of basic operators. I Fundamental symmetries: Galilean, rotational and translational invariance I Basic operators: I I I I I Consider the scattering χ(p) + N(k) → χ(p0 ) + N(k0 ) Momentum conservation → M(p, k, q) Galilean invariance → M(v = p/mχ − k/mN , q) In general, M = M(v, q, Sχ ,SN ) We therefore identify five basic operators 1χN i q̂ v̂⊥ = v̂ + q̂ 2µN Ŝχ ŜN Effective Hamiltonian for dark matter-nucleon interactions I 14 linearly independent operators can be constructed from the basic operators, if we demand that they are at most quadratic in q̂ (and arise from the exchange of a mediator of spin ≤ 1) I The most general Hamiltonian density is therefore Ĥ(r) = X X τ =0,1 ckτ Ôk (r) t τ k • t 0 = 1, t 1 = τ3 • ckp = (ck0 + ck1 )/2 and ckn = (ck0 − ck1 )/2 Dark matter-nucleon interaction operators Ô9 = i Ŝχ · ŜN × Ô1 = 1χN Ô3 = i ŜN · q̂ mN × v̂⊥ Ô4 = Ŝχ · ŜN Ô5 = i Ŝχ · mq̂N × v̂⊥ Ô6 = Ŝχ · mq̂N ŜN · mq̂N Ô7 = ŜN · v̂⊥ Ô8 = Ŝχ · v̂⊥ q̂ mN q̂ mN i Ŝχ · mq̂N Ô10 = i ŜN · Ô11 = Ô12 = Ŝχ · ŜN × v̂⊥ Ô13 = i Ŝχ · v̂⊥ ŜN · mq̂N Ô14 = i Ŝχ · mq̂N ŜN · v̂⊥ h Ô15 = − Ŝχ · mq̂N ŜN × v̂⊥ · q̂ mN i Dark matter-nucleus scattering cross-section I In the ET framework, the dark matter-nucleus scattering cross-section is A Z 2 X X dσT mT = | dr e −iq·r Ĥi (r)|I i hF 2 dER 2πv [jχ ][JT ] spins i=1 I This expression depends on: - 28 coupling constants - 8 nuclear response functions I Available nuclear response functions, e.g.: - For Xe, Ge, I, Na, F: Anand et al. 2013 - For 16 elements in the Sun: R. Catena & B. Schwabe 2015 Global limits: mass vs coupling constants R. Catena and P. Gondolo, JCAP 1409 (2014) 045 3 0 2 0.4 v −5 −2 4 4 χ 0 1 2 3 log (m /GeV) 10 2 1 2 3 log10(mχ/GeV) −2 −4 4 2 v 0 10 10 0 −2 −4 1 2 3 log (m /GeV) 10 4 −4 1 2 3 log (m /GeV) χ 0 −2 10 4 χ 4 4 2 2 2 −4 1 2 3 log10(mχ/GeV) 4 2 v 0 11 0 −2 −4 1 2 3 log10(mχ/GeV) 4 1 2 3 log10(mχ/GeV) 4 1 2 3 log10(mχ/GeV) 4 0 10 10 log (c v 10 2 0 8 −2 0 m ) 4 2 log (c0 m2) 4 0 1 0 7 v 6 2 0 −2 log (c m ) 4 2 log (c0 m2) 4 2 log10(c5 mv ) 4 2 0 0.5 4 χ 4 log10(c9 mv ) 10 1 2 3 log (m /GeV) 10 3 v log (c0 m2) Profile likelihood color code: 0 −4 v 0 −1 χ 1D marginal pdf 1D profile Likelihood 99% CR 95% CL 1 −4 10 10 −3 0.2 1 2 3 log (m /GeV) log (c0 m2) −2 10 0.6 4 −1 0 0.8 1 log (c0 m2) 2 log10(c1 mv ) 1 −2 −4 −2 −4 1 2 3 log10(mχ/GeV) 4 Operator interference R. Catena and P. Gondolo, JCAP 1508, 08, 022 (2015) 1 0 1 1 1 1 c1 − c1 (all data) c1 − c3 (all data) 0 c11 (LUX) 0.8 log10(c11 m2v ) −1 0.6 −2 0.4 −3 0.2 −4 −5 0.5 1 1.5 2 2.5 3 log10(mχ/GeV) 3.5 4 0 I Pairs of operators, or isoscalar and isovector components of the same operator can interfere I For instance, the operators Ô1 and Ô3 generate a transition probability proportional to " c c P 1 3 ∝ X τ τ0 ττ0 c1 c1 WM ττ0 + q2 2 mN q2 (q) + 1 q2 2 8 mN ⊥2 τ τ 0 ττ0 vT c3 c3 WΣ0 τ τ0 ττ0 c c WΦ00 (q) 2 3 3 4mN τ τ0 (q) ττ0 + c1 c3 WΦ00 M (q) !# DAMA confronts null searches I Is there a linear combination of Ôk such that DAMA can be reconciled with null searches? 95% -u.l. cT Aexp-1 (mχ ) c < 1 95% -u.l. cT Aexp-1 (mχ ) c < 1 0 -u.l. cT A95% (mχ ) c < 1 exp-2 (0, 0) cτj cτj 0 95% -u.l. cT Aexp-2 (mχ ) c < 1 σ -l.l. cT AnDAMA [E− ,E+ ] (mχ ) c > 1 cτi R. Catena, A. Ibarra, S. Wild, JCAP 1605, 05, 039 (2016) increasing nσ up to nmax σ (0, 0) nmax -l.l. σ cT ADAMA [E− ,E+ ] (mχ ) c > 1 cτi DAMA confronts null searches II DM with non-zero spin DM with zero spin 7σ 7σ DD + Super-K (τ + τ − /W + W − ) DD + Super-K (τ + τ − /W + W − ) 6σ Only DD 5σ Nσmax Nσmax 6σ 4σ Only DD 5σ 4σ QNa = 0.3, QI = 0.09 3σ 3 10 QNa = 0.3, QI = 0.09 3σ 100 mχ 3 10 DM with non-zero spin [GeV] DM with zero spin 7σ 7σ DD + Super-K (τ + τ − /W + W − ) DD + Super-K (τ + τ − /W + W − ) 6σ 6σ Only DD 5σ Nσmax Nσmax 100 mχ [GeV] 4σ Only DD 5σ 4σ QNa = 0.4, QI = 0.05 3σ 3 10 100 mχ [GeV] QNa = 0.4, QI = 0.05 3σ 3 10 100 mχ [GeV] Neutrino telescopes: highlights R. Catena, JCAP 1504 04, 052 (2015) R. Catena and B. Schwabe JCAP 1504 04, 042 (2015) c04 vs. c011 22 c07 ≠ 0 7 10 0 c13 ≠ 0 7 10 c10≠0 10 IceCube (hard) IceCube (soft) SUPER−K (hard) SUPER−K (soft) LUX COUPP c40≠0 c011≠0 6 10 20 10 H 4 He 3 He 6 12 C 10 14 N 16 O 20 5 Ne 5 10 23 10 Na 24 c013 [m2V] c07 [m2V] C [1/s] Mg 18 10 4 10 27 Al 28 Si 4 10 32 S 40 Ar 40 Ca 3 56 Fe 3 10 10 59 Ni Total LUX 16 10 2 2 10 14 10 10 1 1 10 2 10 mχ [GeV] 3 10 10 1 1 2 10 10 mχ [GeV] • Ô4 = Ŝχ · ŜN , Ô11 = i Ŝχ · q̂/mN • Ô7 = ŜN · v̂⊥ • Ô13 = i Ŝχ · v̂⊥ ŜN · q̂ mN 3 10 4 10 10 1 10 2 10 mχ [GeV] 3 10 4 10 Conclusions I A complete classification of all one-body dark matter-nucleon interaction operators has recently been performed I Current direct detection data place interesting constraints on dark matter-nucleon interaction operators commonly neglected I Destructive interference effects can weaken standard direct detection exclusion limits by up to 1 order of magnitude in the coupling constants I Even within this general theoretical framework, it seems to be difficult to reconcile DAMA with null searches
© Copyright 2026 Paperzz