CSE598A/EE597G Spring 2006 Operational Amplifier Configurations Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania State University Mixed Signal Chip Design Lab Ideal Op-Amp • infinite voltage gain (A = ∞, V-=V+ for finite VO) • infinite input impedance (i- = i+ = 0) • zero output impedance i- • infinite bandwidth • zero input offset V- VO V+ i+ VO = A(V+ - V-) Mixed Signal Chip Design Lab Ideal Op-Amp Inverting Amplifier Configuration • current through R1 = current through Rf (∵ i-=i+= 0) (Vin-V1) / R1 = (V--VO) / Rf Rf • and V- = V+ = 0 Vin R1 VVO • VO = -(Rf / R1)·Vin Mixed Signal Chip Design Lab Ideal Op-Amp Non-Inverting Amplifier Configuration • current through R1 = current through Rf (∵ i-=i+= 0) (VO-V-) / Rf = V- / R1 • and Vin VO V- V- = V+ = Vin • VO = (1 + Rf / R1)·Vin R1 Rf Mixed Signal Chip Design Lab Ideal Op-Amp Voltage Follower (Unit Gain Buffer) • unit-gain non-inverting amplifier • VO = Vin Vin VO Mixed Signal Chip Design Lab Non-Ideal Op-Amp Real World • gain is not infinite V- ≠ V+ • gate current i+ ≠ 0, i- ≠ 0 (but still negligible) • finite bandwidth requires frequency compensation Mixed Signal Chip Design Lab Non-Ideal Op-Amp Inverting Amplifier Configuration Rf Vin R1 V- VO = A(V+ - V-) V- = -VO / A (Vin - V-) / R1 = (V- - VO) / Rf VO VO = -Rf/R1 1+(1+Rf/R1)/A note that if A → ∞, VO → -(Rf / R1)Vin Mixed Signal Chip Design Lab Vin Non-Ideal Op-Amp Non-Inverting Amplifier Configuration Vin VO V- R1 Rf A VO = 1+ R1 Vin A R1+Rf note that if A → ∞, VO → (1+Rf / R1)Vin Mixed Signal Chip Design Lab Op-Amp with Single Supply Inverting Amplifier Configuration Rf R1 Vin VO R Vdd / 2 R Mixed Signal Chip Design Lab Op-Amp with Single Supply Non-Inverting Amplifier Configuration Vin R R VO Vdd / 2 Rf Mixed Signal Chip Design Lab Op-Amp with Single Supply Amplifier Design • well-designed amplifier should have a transition point centered at Vdd / 2 Vdd Vdd/2 V+ V VO VO V+ Vdd / 2 Vdd / 2 Mixed Signal Chip Design Lab V Op-Amp with Single Supply Examples from Last Class • voltage comparator 5V 2.5 V VO V+ – V+ = 2.5 V VO = ? – V+ = 2.501 V VO = ? – V+ = 2.499 V VO = ? Mixed Signal Chip Design Lab Op-Amp with Single Supply Examples from Last Class • ideal case (gain = ∞) 5V 2.5 V ∞ VO V+ • V+ = 2.5 V VO = 2.5 V • (V+ = V- for finite VO and VO centered at 2.5 V) V+ = 2.501 V VO = 2.5 + A(V+-V-) = ∞ VO = 5 V (limited to supply) • V+ = 2.449 V VO = 2.5 + A(V+-V-) = -∞ VO = 0 V (limited to supply) Mixed Signal Chip Design Lab Op-Amp with Single Supply Examples from Last Class • gain A = 1000 5V 2.5 V A VO V+ • V+ = 2.5 V VO = 2.5 V (VO centered at 2.5 V) • V+ = 2.501 V VO = 2.5 + 1000(V+-V-) = 3.5 V • V+ = 2.449 V VO = 2.5 + 1000(V+-V-) = 1.5 V Mixed Signal Chip Design Lab Op-Amp with Single Supply HSpice Simulation V+ VO • • • • • .DC analysis centered at 2.5 V gain ≈ 1,175 V+ = 2.501 V VO = 3.421 V V+ = 2.449 V VO = 1.324 V Mixed Signal Chip Design Lab
© Copyright 2025 Paperzz