S02OpampBasic - Computer Science Penn State

CSE598A/EE597G Spring 2006
Operational Amplifier Configurations
Jaehyun Lim, Kyusun Choi
Department of Computer Science and Engineering
The Pennsylvania State University
Mixed Signal Chip Design Lab
Ideal Op-Amp
• infinite voltage gain (A = ∞, V-=V+ for finite VO)
• infinite input impedance (i- = i+ = 0)
• zero output impedance
i-
• infinite bandwidth
• zero input offset
V-
VO
V+
i+
VO = A(V+ - V-)
Mixed Signal Chip Design Lab
Ideal Op-Amp
 Inverting Amplifier Configuration
• current through R1 = current through Rf (∵ i-=i+= 0)
(Vin-V1) / R1 = (V--VO) / Rf
Rf
• and
V- = V+ = 0
Vin
R1
VVO
• VO = -(Rf / R1)·Vin
Mixed Signal Chip Design Lab
Ideal Op-Amp
 Non-Inverting Amplifier Configuration
• current through R1 = current through Rf (∵ i-=i+= 0)
(VO-V-) / Rf = V- / R1
• and
Vin
VO
V-
V- = V+ = Vin
• VO = (1 + Rf / R1)·Vin
R1
Rf
Mixed Signal Chip Design Lab
Ideal Op-Amp
 Voltage Follower (Unit Gain Buffer)
• unit-gain non-inverting amplifier
• VO = Vin
Vin
VO
Mixed Signal Chip Design Lab
Non-Ideal Op-Amp
 Real World
• gain is not infinite
 V- ≠ V+
• gate current
 i+ ≠ 0, i- ≠ 0 (but still negligible)
• finite bandwidth
 requires frequency compensation
Mixed Signal Chip Design Lab
Non-Ideal Op-Amp
 Inverting Amplifier Configuration
Rf
Vin
R1
V-
VO = A(V+ - V-)  V- = -VO / A
(Vin - V-) / R1 = (V- - VO) / Rf
VO
VO =
-Rf/R1
1+(1+Rf/R1)/A
note that if A → ∞, VO → -(Rf / R1)Vin
Mixed Signal Chip Design Lab
Vin
Non-Ideal Op-Amp
 Non-Inverting Amplifier Configuration
Vin
VO
V-
R1
Rf
A
VO =
1+
R1
Vin
A
R1+Rf
note that if A → ∞, VO → (1+Rf / R1)Vin
Mixed Signal Chip Design Lab
Op-Amp with Single Supply
 Inverting Amplifier Configuration
Rf
R1
Vin
VO
R
Vdd / 2
R
Mixed Signal Chip Design Lab
Op-Amp with Single Supply
 Non-Inverting Amplifier Configuration
Vin
R
R
VO
Vdd / 2
Rf
Mixed Signal Chip Design Lab
Op-Amp with Single Supply
 Amplifier Design
• well-designed amplifier should have a transition
point centered at Vdd / 2
Vdd
Vdd/2
V+
V
VO
VO
V+
Vdd / 2
Vdd / 2
Mixed Signal Chip Design Lab
V
Op-Amp with Single Supply
 Examples from Last Class
• voltage comparator
5V
2.5 V
VO
V+
– V+ = 2.5 V
 VO = ?
– V+ = 2.501 V  VO = ?
– V+ = 2.499 V  VO = ?
Mixed Signal Chip Design Lab
Op-Amp with Single Supply
 Examples from Last Class
• ideal case (gain = ∞)
5V
2.5 V
∞
VO
V+
• V+ = 2.5 V  VO = 2.5 V
•
(V+ = V- for finite VO and VO centered at 2.5 V)
V+ = 2.501 V  VO = 2.5 + A(V+-V-) = ∞
 VO = 5 V (limited to supply)
• V+ = 2.449 V  VO = 2.5 + A(V+-V-) = -∞
 VO = 0 V (limited to supply)
Mixed Signal Chip Design Lab
Op-Amp with Single Supply
 Examples from Last Class
• gain A = 1000
5V
2.5 V
A
VO
V+
• V+ = 2.5 V  VO = 2.5 V (VO centered at 2.5 V)
• V+ = 2.501 V  VO = 2.5 + 1000(V+-V-) = 3.5 V
• V+ = 2.449 V  VO = 2.5 + 1000(V+-V-) = 1.5 V
Mixed Signal Chip Design Lab
Op-Amp with Single Supply
 HSpice Simulation
V+
VO
•
•
•
•
•
.DC analysis
centered at 2.5 V
gain ≈ 1,175
V+ = 2.501 V  VO = 3.421 V
V+ = 2.449 V  VO = 1.324 V
Mixed Signal Chip Design Lab