MAT 4725 Handout 8.2 Part II Recall (Linear Algebra p.1 – p.2) Inner Product Example 1 b Let f , g C a, b . Show that f , g f x g x dx is an inner product on C a, b . a Norm, Distance, … Orthonormal Bases A basis S for an inner product space V is orthonormal if 1. For u , v S , u, v 0 2. For u S , u is a unit vector. 1 Gram-Schmidt Process v1 , v2 , , vn Basis w1 , w2 , , wn Othogonal Basis u1 , u2 , , un Othonormal Basis 2 Definition 8.1 0 ,1, ,n is said to be linearly independent on [a, b] if, whenever n c ( x) 0, x [a, b] , j 0 j j we have ck 0 j 0,1,..., n. Theorem 8.2 If j ( x ) is a polynomial of degree j , then 0 , 1 , interval [a, b] . , n is linearly independent on any Idea Definition n the set of polynomials of degree n Theorem 8.3 If 0 ( x), 1 ( x), , n ( x) is linearly independent in n , then Q n , unique c j such n that Q( x) c j j ( x) . j 0 3 Example 1 0 ( x) 2 1 ( x) x 3 2 2 ( x) x 2 x 7 Express Q( x) a0 a1 x a2 x 2 as a linear combination of 0 ( x), 1 ( x) , and 2 ( x). 4 Weight function We will use w t 1 for the most of the examples. Modification of the Least Squares Approximation n Given f C[a, b] , approximate f ( x) by P( x) akk ( x) . k 0 b Find ak such that E w( x) f ( x) P( x) dx is minimized. 2 a b a w ( x ) ( x ) ( x ) dx w( x) f ( x) j ( x)dx for j 0,1,..., n k k j k 0 a a n b What if… Definition 8.5 0 ( x),1 ( x), ,n ( x) is said to be an orthogonal set of functions on [a, b] with respect to w if b jk 0 w ( x ) ( x ) ( x ) dx k j a j 0 j k (Orthonormal if all j =1 .) Theorem 8.6 b w( x) f ( x) ( x)dx k ak a b w( x) ( x) 2 k dx 1 k b w( x) f ( x) ( x)dx k a a 5 Gram-Schmidt Process 0 ( x) 1 b x ( x) 2 0 1 ( x) x B1 where B1 dx a b ( x) 2 0 dx a For k 2, k ( x) x Bk k 1 ( x) Ckk 2 ( x) b x k 1 ( x) dx b 2 where Bk a b k 1 ( x) 2 x k 1 and Ck ( x)k 2 ( x)dx a b dx a ( x) dx 2 k 2 a Legendre Polynomials P0 ( x) 1 1 x P ( x) 2 0 P1 ( x) x B1 x where B1 dx 0 1 1 P ( x) 2 0 dx 1 P2 ( x) x B2 P1 ( x) C2 P0 ( x) x 2 1 3 1 x P1 ( x) dx 1 2 where B2 1 1 P ( x) 2 1 1 dx xP ( x) P ( x)dx 1 0 and C2 0 1 1 P ( x) 2 0 dx 1 3 1 6 Example 2 Find the least squares approximation of f x sin x on 1,1 by the Legendre Polynomials. 1 1 f ( x) P ( x)dx sin x 1dx 0 a0 1 1 P ( x) 2 0 1 1 1 2 dx 1 a1 1 f ( x) P1 ( x)dx 1 1 P ( x) 2 1 sin( x) xdx 1 sin( x) x a3 2 1 1 dx 3 2 2 1 1 x 3 dx 1 1 sin( x) x 1 3 dx 3 0 3 x dx 5 2 3 3 1 x 5 x dx 1 x 1 1 1 2 dx 1 a2 dx 1 1 0 35 15 2 2 3 P( x) a0 P0 ( x) a1P1 ( x) a2 P2 ( x) a3 P3 ( x) 7
© Copyright 2026 Paperzz