ELEMENTARY LINEAR ALGEBRA MAP 1099 List 1 Mathematical induction, Newton’s binomial formula, Complex numbers, Polynomials. 1 8 October 2015 1. Apply mathematical induction to show that following formulas are valid for all n ∈ N: i) 1 + 3 + · · · + (2n − 1) = n2 , ii) 1 1·2 + 1 2·3 + ··· + 1 n(n+1) iii) 1 + 3 + · · · + 3n−1 = iv) 13 + 23 + · · · + n3 = = n , n+1 3n −1 , 2 h i n(n+1) 2 . 2 2. Apply mathematical induction to show that following inequalities are valid for indicated natural numbers: i) 2n > n2 for n 5, ii) 1 12 + 1 22 + ··· + 1 n2 ¬2− 1 n for n ∈ N, iii) n! > 2n for n 4, iv) (1 + x)n 1 + nx for x −1 and n ∈ N (Bernoulli inequality), v) n! < n n 2 for n 6. 3. Apply mathematical induction to show that i) 5 divides n5 − n for all natural n 2, ii) 7 divides 8n + 6 for any n ∈ N. 4. Apply Newton’s binomial formula to expand following powers √ √ √ i) (2x − y)4 , ii) (c + 2)6 , iii) (x + x13 )5 , iv) ( u − 4 v)8 . 15 5. i) Find the coefficient standing in front of a5 in the expansion of a3 + a12 . √ 7 √ 4 ii) Find the coefficient standing in front of 4 x in the expansion of x5 − x33 . * 6. Comparing real and imaginary part of both sides of given equations find their solutions: a) z = (2 − i)z, b) (1 + 3i)z + (2 − 5i)z = 2i − 3. 7. Draw on the complex plane the subsets of C which satisfy following conditions: i) Re(z + 1) = Im(2z − 4i), 1 ii) Re(z 2 ) = 0, iii) Im(z 2 ) ¬ 8, iv) Re( z1 ) > Im(iz). Translated and compiled from the list of exercises ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ, ALGEBRA LINIOWA 1 (rok akad. 2015/16) by Jan Goncerzewicz. The original in Polish available on http://prac.im.pwr.wroc.pl/ gewert/index1.html. 8. Applying geometrical interpretation of the modulus of the difference of two complex numbers determine and draw the subsets of C which satisfy foloowing conditions: i) |z + 2 − 3i| < 4, ii) |z + 5i| |3 − 4i|, iv) |z + 3i| < |z − 1 − 4i|, vi) z−3i z > 1, vii) iii) |z − 1| = |1 + 5i − z|, v) |z + 2 − 3i| < 5, 2 z +4 z−2i vi) |iz + 5 − 2i| < |1 + i|, viii) |z 2 + 2iz − 1| < 9. ¬ 5, 9. Applying de Moivre’s formula calculate: √ 6 √ √ √ i) − 21 + i 23 , ii) (2i − 12)9 , iii) ( 5 2 − i 5 2)15 , √ iv) ( 3 − i)20 . Give the answer in algebraic form. 10. Calculate and draw on the complex plane all complex roots of given numbers: √ √ √ i) 4 −16, ii) 3 27i, iii) 6 8. 11. Solve the following equations in C: i) z 2 + 4 = 0, ii) z 2 − 2z + 10 = 0, v) z 2 + (1 − 3i)z − 2 − i = 0, iii) z 2 + 3iz + 4 = 0, vi) z 6 = (1 − i)12 , iv) z 4 + 5z 2 + 4 = 0, vii) (z − i)4 = (z + i)4 . * 12. Find all integer roots of the following polynomials: i) x3 + 3x2 − 4, ii) x4 − 2x3 + x2 − 8x − 12, iii) x4 − x2 − 2. 13. Find all rational roots of the following polynomials: i) 12x3 + 8x2 − 3x − 2, ii) 18x3 − 9x2 − 2x + 1, iii) 6x4 + 7x2 + 2. 14. Find all roots of given polynomials knowing one of their roots: i) W (x) = x4 − 4x3 + 12x2 − 16x + 15, ii) W (x) + x4 − 2x3 + 7x2 + 6x − 30, √ √ iii) W (x) = x3 − 3 2x2 + 7x − 3 2, x1 = 1 + 2i, x1 = 1 − 3i, √ x1 = 2 + i. 15. For given polynomials P and Q find the reminder in division P by Q without performing the dividing algorithm (polynomial long division): i) P (x) = x8 + 3x5 + x2 + 4, ii) P (x) = x47 + 2x5 − 13, Q(x) = x2 − 1, Q(x) = x3 − x2 + x − 1, iii) P (x) = x99 − 2x98 + 4x97 , Q(x) = x4 − 16. 16. Factorize given polynomials into irreducible real polynomials: i) x3 − 27, ii) x4 + 16, iii) x4 + x2 + 1, iv) x6 − 1. 17. Expand given rational functions into partial fractions: i) 2x+5 , x2 −x−2 ii) x+9 , x(x+3)2 iii) 3x2 +4x+3 , x3 −x2 +4x−4 iv) x3 −2x−7x+6 . x4 +10x2 +9
© Copyright 2026 Paperzz