JS 15 SOLUTIONS PART III (TRIANGLE) MISCELLANEOUS EXERCISE PAGE 344(BELOW)-346 1. 2B = A + C sin B sin C (*) 3 3 2 sin C From (**) C = 45 3 2 . Also A + B + C = 180 B = 60 from (*) sin C 2 1 2 (135 is not possible since B = 60) A = 180 – (60 + 45) = 75 2. r1 , r2 , r3 . If r1, r2, r3 are in A.P. sa s b sc are in A.P. s – a, s – b, s – c are in A.P. , , s a s b s c -a, -b, -c are in A.P. a, b, c are in A.P. 3. b c 11k , c a 12k , a b 13k 2 a b c 18k a 7k , b 6k , c 5k We can now easily show 4. cos A cos B cos C 7 19 25 The given relation is 2 cos y y2 1 x 2 4 2 y2 1 A B A B C 3 cos 1 2sin 2 2 2 2 2 A B A B , y cos x cos 2 2 2xy – 2x2 = ½ a b c 18k 2 y x 0 2 y2 1 0 4 y2 1 y = 1, y = -1, y = -1 cos A B 1 2 y 2 cos 2 1 A B 2 A B 2 which is absurd Again y = 1 cos A B 1 2 (the other solutions are not possible) A B 1 2 2 cos A B 0 2 A = B Also y = 1, x = y/2 = ½ A B 60 2 But as A = B we must have A = B = 60 whence C is also 60. 5. sin A sin B sin C sin A sin B (True for all triangle) Adding cos A cos B on both sides we get; in the given triangle 1 cos A B cos A cos B sin A sin B sin C 1 given cos A B 1 which is not possible unless cos A B 1 A B 0 A B On putting A B in the given relation we get cos2 A sin 2 Asin C 1 sin 2 Asin C sin 2 A Whence 6. A B 45 sin C 1 a : b : c 1:1: 2 C 90 Taking A as origin median AD as x-axis. Let B be (x1, y1); and C be (x2, y2) then BC = x1 x2 2 y1 y2 2 Also AD = 11 6 3 We easily note that y1 1 tan 30 x1 3 1 2 (*) p (say) y2 tan135 (slope of AC) = -1 x2 y1 x1 3 , y2 x2 . Also x1 x2 y y2 p, 1 0 2 2 On solving these relations we get 2 D lies on x axis x1 2 3p 3 1 2p , x2 3 1 , y1 2p 3 1 2 , y2 2 3p 2 p 4p BC 3 1 3 1 2 7. 2p 3 1 2 2p 82 3 2. 4 2 3 11 6 3 2 3 1 4 3 1 2 p 11 6 3 We are given 2B = A + C and A + B + C = . From these two equation B putting B 1 2 2 , AC . On 3 3 2 ,C A in the given equation we get 3 3 2 5 1 sin 2 A sin 2 A sin 2A 3 3 3 2 There should be a value of A satisfying the above equality. If we equate all sines to ½. We get 2 A 2A 2 n n n 1 , 2 A m 1 , 3 6 3 6 5 c l 1 3 6 sin sin The first equation above will yield permissible A (i.e. between 0 and 180). For n = 1 only. This angle is /4. The second and third yield /4 for m = 0 and l = -1 respectively. Thus the only value of A satisfying the conditions is A = 45 whence B = 60, C = 75. 8. Let c/b = r < 1 we have to show that altitude AD ar 1 r2 Since 1 a AD, 2 (*) AD 2 a Inequality to be proved is equivalent to 3 2 a c b c2 1 2 b a b2 c 2 2R a 2 abc which transforms to 2 a b c2 2 R sin B abc R 4 2 2 R sin C 2 R sin A 2 2R which is reducible to true inequality sin(B – C) 1 Note: The use of r < 1 can be observed in cross multiplying since b2 – c2 > 0. 9. Let AB = n, AC = n + 1, BC = n + 2 Further let A = 2C (Since C is smallest and A is largest) By sine rule we sin A sin B sin C n 2 n 1 n Equating first and third ratios and cancelling sin C 0 we get 2 cos C 1 n 2 n2 n 2n sin B sin A C etc Now as A = 2C, A + B + C = 180 we have B = 180 – 3C sin B sin 3C sin 3C sin C n 1 n on canceling sin C 0 we get sin2 C = 2n 1 . But from above 4n n2 2 sin C 1 cos C 1 equating the two values of sin C we get 2 n 2 2 2 n2 – 3n – 4 = 0 n = 4, n = -1 Since -1 is inadmissible we have n = 4 whence the sides are 4, 5 and 6. 10. Let C1, C2, C3 be centres of the circles. It is evident that the point O where the tangents meet must at the incentre I of the triangle C1C2C3. Now sides a’, b’, c’ 4 have of the triangle C1C2C3 are given by a’ = C2C3 = r2 + r3 b’ = r1 + r3, c’ = r1 + r2 s a b c 2 whence r1 r2 r3 s s a s b s c r1r2 r3 r1 r2 r3 Now 4 = inradius of C1C2 C3 11. 4 s r1 r2 r3 r1 r2 r3 r1 r2 r3 r1r2 r3 16 . r1 r2 r Let us first show (i) (ii) are rational then s is rational (obvious), s a, s b, s c are also rational If a, b, c, tan B rational, 2 s s b tan C rational 2 s s c (i) (ii) Now let us show (ii) (iii) Let a, tan B C are rational then we must show that sin A,sin B,sin C are rational. , tan 2 2 B 2 rational, sin B B 1 tan 2 2 2 tan C 2 rational sin C C 1 tan 2 2 2 tan B C 1 tan tan A 2 2 Now tan 2 tan B tan C 2 2 5 B C B C A , tan are rational and tan tan can not be zero we conclude that tan is 2 2 2 2 2 B 2 tan 2 is also rational. Thus (ii) (iii) sin A rational 2 B 1 tan 2 Since tan Finally to show (iii) (i) If a,sin A,sin B,sin C are rational then b and c are obviously rationals as b sin B c sin C 1 and as bc sin A which is also rational. Thus (iii) (i) , a sin A a sin A 2 12. Let OA1 = OA2 = OA3 = r A1OA2 = A2OA3 = A3OA4 2 . n Then A1 A2 r 2 r 2 2r 2 cos 2 2r 2 1 cos 4r 2 sin 2 similarly, A1 A3 2r sin . 2 A1 A2 2r sin 2 2 3 2r sin , A1 A4 2r sin 2 2 On substituting in the given relation we get 1 sin 2 1 sin cos 1 3 3 2sin sin 2sin sin 2sin sin 3 2 2 2 2 sin 2 5 3 cos = cos cos 2 cos cos 2 2 2 2 cos 2 cos 2 cos 3 5 cos cos 2 2 7 7 3 7 3 cos 2 cos cos cos cos cos 0 2 4 2 2 4 4 4 6 cos 7 2n 2 13. 7 2sin sin 0 4 2 4 since sin 0, sin 0, n 2n n7 tan B tan C = p tan B tan B p 4 1 tan B p 1 tan B tan B Now make a quadratic in tan B and solve discriminant > 0. 14. If the triangle ABC is equilateral then tan A + tan B + tan C = 3 follows. Let us prove the converse. In any triangle tan A + tan B + tan C = tan A tan B tan C From AM GM 1 1 x tan A tan B tan C tan A tan B tan C 3 x 3 where 3 3 x = tan A + tan B + tan C = tan A + tan B + tan C x2 x x 2 27 27 x3 3 x 0 But we are given x 3 3 AM GM 15. A B C 90 . Take cot both sides and cross multiply. 2 2 2 17. tan A tan B tan C A B C 60 tan 1 i 1 1 2i 2 tan 1 i 1 2i 1 2i 1 2 tan 1 2 4i 1 2i 1 2i 1 tan 1 2i 1 tan 1 2i 1 i 1 The sum upto n terms tan 1 2n 1 tan 1 1 18. Sum upto a, b, c are in A.P 2 4 4 . Hence tan t tan 2b a c 7 4 1 a Now cos1 bc 1 tan 2 1 tan 2 We have 2 2 abc abc tan 2 2 a bc 1 tan 2 2 2 abc a (b c) 1 tan 2 1 tan 2 2 2 Similarly tan 2 19. 1 tan 2 tan 2 1 2 tan 2 2 3 2 bca , abc 2b b 2 a b c 3b 3 sin 2 A sin 2 B sin A B sin 2 A sin 2 B sin A B sin A B 1 sin A B 2 0 2 sin A B sin A sin B The first possibility gives sin(A – B) = 0 A = B the second will reduce to cos(A + B) = 0 A + B = /2 C = /2 A B sin A B C cos cos A B 2 2 2 2 2 cot cot A B A B A B 2 2 sin sin sin sin sin sin 2 2 2 2 2 2 cos 20. LHS C B C A sin b cos sin 2 2 2 2 A B sin sin 2 2 a cos C B C A sin 2 R sin B cos sin 2 2 2 2 A B sin sin 2 2 2 R sin A cos 4 R cos A C B B C A cos sin 4 R cos cos sin 2 2 2 2 2 2 8 4 R cos 2 C A B C C sin 4 R cos cos 2 2 2 2 c C C cos 2 c cot sin C 2 2 C C sin C 2sin cos 2 2 21. On dividing the given relation by sin 3 ( by sin in each of the individual brackets), We get 1 (sin A cot cos A) (sin B cot cos B ) sin C cot cos C ) On dividing by sin A sin B sin C we get cos ecA cos ecB cos ecC (cot cot A) (cot cot B) (cot cot C ) which reduces to cot 3 (cot A cot B cot C ) cot 2 (cot A cot B cot B cot C cot C cot A) cot ( cot A cot B cot C cos ecA cos ecB cos ecC ) 0 Now using the common identity cot A cot B cot B cot C cot C cot A 1and the uncommon identity cot A cot B cot C cos ecA cos ecB cos ecC cot A cot B cot C The above equation becomes cot 3 (cot A cot B cot C ) cot 2 cot (cot A cot B cot C ) 0 (cot 3 1)[cot (cot A cot B cot C )] 0 whence it follows that cot cot A cot B cot C. 22. The assertion follows it we could show the validity of the following relations tan A tan B tan C p 1 p , tan A tan B tan B tan C tan C tan A q q and tan A tan B tan C p q The third one is straight forward since tan A tan B tan C sin A sin B sin C cos A cos B cos C The first one is also true since in any triangle tan A tan B tan C tan A tan B tan C Finally the second follows from uncommon triangle identity 9 tan A tan B tan B tan C tan C tan A 1 sec A sec B sec C 1 1 q Which can be proved by writing cos( A B C ) 1 expand and divide by cos A cos B cos C. 23. If tan A C 2 B tan cot then 2 2 3 2 Multiple by 24. ( s b)( s c) ( s a)( s b) 2 s ( s b) s(s a) s ( s c) 3 ( s a)( s c) (s a)(s b)(s c)s and cancel ( s b) to get ab a c . We have cos( A B) 4 / 5 or 2cos 2 A B A B 3 1 4 / 5 cos 2 2 10 A B A B A B A B A B A B sin B sin sin cos cos sin 2 2 2 2 2 2 cos C 3 C 1 sin 2 10 2 10 Similarly sin A cos sin B b 1 sin A a 2 C 3 C 1 sin 2 10 2 10 C C sin 2 2 C C 3cos sin 2 2 3cos Hence , area of ABC or tan C 1C 90 2 1 6 3 sq. units = 9sq. units . 2 10
© Copyright 2026 Paperzz