!"#$%& %' (#"")"(# &"(*"+#
!"# $%&!'"()% *+#$ ,%-%./0%, 12 3"%45'' 6789:; < "# %=$+%4%.2 )#%>). >/+ !5'?
,."'@ "'$%@+5.# /> $!% >/+4
I(λ) =
Z
eλp(z) q(z) dz
C
A!%+% C "# 5 &/'$/)+ "' $!% &/40.%= 0.5'% 5', p(z), q(z) 5+% 5'5.2$"& >)'&$"/'#<
5', λ "# $5B%' $/ 1% +%5.C6D> λ "# &/40.%= "% λ = |λ|eiα A% &5' 51#/+1 $!% %=0/?
'%'$"5. >5&$/+ "'$/ p(z)C; E% +%()"+% $!% 1%!5-"/)+ /> I(λ) 5# λ → ∞.
!% 15#"& ",%5 /> $!% 4%$!/, /> #$%%0%#$ ,%#&%'$ 6/+ #/4%$"4%# +%>%++%, $/
5# $!% !""#$%&'()* +$*,'";< "# $!5$ A% 500.2 F5)&!2G# $!%/+%4 $/ ,%>/+4 $!%
&/'$/)+ C $/ &/'$/)+# &/"'&","'@ A"$! $!% 05$! /> #$%%0%#$ ,%#&%'$C H#)5..2 $!%#%
&/'$/)+# 05## $!+/)@! 0/"'$# z = z0 A!%+% p′(z0) = 0. I# A% A".. #%% /' $!%
#$%%0%#$ ,%#&%'$ &/'$/)+#< ℑ(p(z)) "# &/'#$5'$ 5', #/ A% 5+% .%>$ A"$! "'$%@+5.# />
$!% $20% A!"&! &5' 1% !5',.%, )#"'@ E5$#/'G# .%445C
J%$ p(z) = u(x, y) + iv(x, y) 1% 5' 5'5.2$"& >)'&$"/' /> $!% &/40.%= -5+"51.%
z = x + iy "' #/4% ,/45"' DC K/$"&% $!5$ >/+ 5'2 05$! /> "'$%@+5$"/' $!%
%=0/'%'$"5. >)'&$"/'
eλp(z) = eλu(x,y) eiλv(x,y)
452 !5-% 5 45="4)4 4/,).)# 5$ #/4% 0/"'$ z = z0 /' $!% 05$!C D,%5..2 A%
A/)., ."B% $/ &!//#% 5 05$! '%5+ 5 0/"'$ z = z0 #)&! $!5$ u 5$$5"'# 5 0%5B 5',
,%&+%5#%# 5A52 >+/4 z = z0C L)$ $!% "45@"'5+2 05+$ v(x, y) A".. "' @%'%+5. 5.#/
&!5'@% 5', $!% %=0/'%'$"5. >5&$/+ eiλv A".. /#&"..5$% +50",.2 '%5+ z0C
!"# #)@@%#$# $!5$ 5 #)"$51.% 05$! "# /'% A!%+% v(x, y) "# '%5+.2 &/'#$5'$ 5#
A% 4/-% 5A52 >+/4 z = z0C I.#/ 12 $!% 45="4)4 4/,).)# $!%/+%4 u, v &5''/$
5$$5"' 45="4)4 /+ 4"'"4)4 -5.)%# "' 5 ,/45"' "> p(z) "# 5'5.2$"&< /'.2 /' $!%
1/)',5+2 /> $!% +%@"/'C !)# $!% 0/"'$ z = z0 4)#$ &/"'&",% A"$! 5 #5,,.% 0/"'$
A!%+% p′(z0) = 0.
!% 4%$!/, /> #$%%0%#$ ,%#&%'$ "# $!)# 5.#/ &5..%, $!% #5,,.% 0/"'$ 4%$!/,C
D> A% &/'#",%+ $!% #)+>5&%
u(x, y) = u(x0 , y0 )
05##"'@ $!+/)@! #/4% 0/"'$ z = z0 /> D $!%' '/$% $!5$ ∇u|z ,%*'%# $!% ,"+%&$"/'
/> #$%%0%#$ 5#&%'$ >+/4 $!% 0/"'$ z = z0 5', −∇u|z $!% ,"+%&$"/' /> #$%%0%#$
,%#&%'$C
K/A &/'#",%+ $!% #)+>5&%
0
0
v(x, y) = v(x0 , y0 ).
E% !5-% $!5$ ∇v = (vx, vy ) "# "' 5 ,"+%&$"/' '/+45. $/ $!% #)+>5&%C L)$ )#"'@ $!%
F5)&!2?3"%45'' %()5$"/'# vx = −uy , vy = uxC
!"#$%&''( !"#$$!%&! '#&(!$#&)"*(! +!,-! )$ *+,( -$#./#0( ..! 1)12134
MN
!"#
∇v = (vx , vy ) = (−uy , ux ).
$%&'% ( )*+%',*-& ,(&.%&,*(/ ,- ,!% #"+0('% *# .*1%& 23
(−vy , vx ) = (ux , uy ) = ∇u.
!"# ,(&.%&,# ,- ,!% #"+0('%
v(x, y) = v(x0 , y0 )
/*% *& ,!% )*+%',*-& -0 #,%%4%#, (#'%&,5)%#'%&, ,!+-".! z0 (&) ,!% /*&%# -0 '-&#,(&,
u (&) '-&#,(&, v *&,%+#%', (, +*.!, (&./%# *& ,!% +%.*-&# -0 (&(/3,*'*,3 -0 ,!%
0"&',*-
z0
7*."+% 89 34*'(/ #,%%4%#, (#'%&,5)%#'%&, '"+1%# #!-:& 23 #-/*)5)(#!%) /*&%#
&%(+ ( #*;4/% #())/% 4-*&, z = z0
<2#%+1% (/#- ,!(, 0-+ (&3 '!(&.% δp
δp = δu + iδv
(&) #-
|δu| ≤ |δp|
(&) |δu| *# ( ;(=*;"; (, z = z0 -&/3 :!%& δv = 0> *% :!%& v(x, y) = v(x0, y0)6
!"#$%$&# ! "!#$! z = z %& '! ' ('))*! +&$#% &, &-)!- N − 1 ()
0
p′ (z0 ), . . . p(N −1) (z0 ) = 0,
p(N ) (z0 ) 6= 0.
* +,""-! .&($% &/ &/"!/ 0 (+ , +(1.-! +,""-! .&($%2
?@
!"# z = z0 $! %"&!
p(z) = p(z0 ) +
'())*+,
(z − z0 )N (N )
p (z0 ) + o((z − z0 )N ).
N!
z = z0 + ρeiθ ,
$! %"&!
p(N ) (z0 ) = aeiα
ρN aei(N θ+α)
.
N!
"./!+)34!./!+) )%#0(,% z = z0
p(z) − p(z0 ) ∼
-%(. )%! /(#&!. 01 .)!!2!.)
ℑ(p(z) − p(z0 )) = 0
"#! ,*&!+ 50/"556 76
=⇒ sin(N θ + α) = 0,
,*&*+, N θ + α = kπ, $%!#! k *. "+ *+)!,!#8 9+ )%*. /".!
p(z) − p(z0 ) = u(x, y) − u(x0 , y0 ) ∼
-%(. )%! /(#&!. 01
θ=−
!""#" ! $" %"&!
π
α
+ (2k + 1)
N
N
ρN
a cos(N θ + α).
N!
"#! ,*&!+ 76
k = 0, 1, 2, . . . , N − 1,
.*+/! cos(N θ + α) *. )%!+ +!,")*&! "+4 u(x, y) < u(x0, y0) ". $! :0&! "$"6 1#0:
z = z0 8
-%! /(#&!. 01 !""#" ! ' %"&! "#! ,*&!+ 76
θ=−
α
π
+ 2k
N
N
k = 0, 1, 2, . . . , N − 1,
.*+/! cos(N θ + α) *. )%!+ 20.*)*&! "+4 u(x, y) > u(x0, y0) ". $! :0&! "$"6 1#0:
z = z0 8
;0+.*4!# p(z) = z − z3 . 0$ p′(z) = 1 − z 2 "+4 .0 )%! !"#" $% &'"(#)
′
$%!#! p (z) = 0 "#! ,*&!+ 76 z = ±18 <5.0 p′′(z) = −2z "+4 )%(. p′′(1) = −2 =
2eiπ = "+4 p′′ (−1) = 2.
!"# z = 1 )%! 4*#!/)*0+. 01 .)!!2!.) 4!./!+) "#! ,*&!+ 76 )%! 4*#!/)*0+.
θ = − π2 + (2k + 1) π2 , k = 0, 1 *! θ = 0, π 8
!"# z = −1 )%! 4*#!/)*0+. 01 .)!!2!.) 4!./!+) "#! ,*&!+ 76 )%! 4*#!/)*0+.
π 3π
θ = 2, 2 8
;0+.*4!# )%! 20*+) z = 1. -%! .)!!2!.) 4!./!+)3"./!+) /(#&!. .")*.16
3
()'*#+"
v(x, y) = ℑ(z −
y2
z3
) = y(1 − x2 + ) = v(1, 0) = 0.
3
3
-%!#! "#! )$0 /(#&!. 01 .)!!2!.) "./!+)34!./!+) 2"..*+, )%#0(,% z0 = 18 -%!.!
"#! y = 0 "+4 1 − x2 + y3 = 08 ;5!"#56 y = 0 *. )%! .)!!2!.) 4!./!+) /(#&!= .!!
>*,8 ?8
2
@A
!"# $%&'()!* #+! ,%(&#
'/#('23
z = −1.
-!*! #+! '#!!,!'# )!'$!&#./'$!&# $0*1!'
y2
v(x, y) = y(1 − x + ) = v(−1, 0) = 0.
3
2
4+(' #(5! #+! $0*1! 1 − x2 + y3
2*%5 x = −1.
2
=0
(' #+! $0*1! %2 '#!!,!'# )!'$!&# !5/&/#(&6
2
1
0
5
2
0
1
-5
-1
y
0
-2
-1
x
0
-1
1
-2
2
-2
-2
-1
7(60*! 89 :;%#' %2 #+! '0*2/$! /&) $%&#%0* ;!1!;' 2%*
u(1, 0)< 4+! '#!!,!'# )!'$!&# ,/#+ (' 6(1!& =3 y = 0<
0
1
2
u(x, y) = Re(z − z 3 /3) =
!"#$%&
>%&'()!* p(z) = coshz − z2 . -!*!
2
p′ (z) = sinhz − z,
p′′ (z) = coshz − 1,
p′′′ (z) = sinhz.
4+0' z = 0 (' / '/));! ,%(&# %2 %*)!* ? /&)
p′′′′ (0) = 1,
/&) #+! )(*!$#(%&' %2 '#!!,!'# )!'$!&# /*! θ = (2k + 1) π4 ,
%2 #+! '0*2/$! u(x, y) = ℜ(p(z)) − 1 (' '+%A& (& 7(6< B<
k = 0, 1, 2, 3<
@ ,;%#
!" #$%&'( ') *%$$+$*% ($*,$-%. /$0 *%$+*
4+! C!3 '#!,' (& 0'(&6 #+! 5!#+%) %2 '#!!,!'# )!'$!&# /*!9
• D)!&#(23 #+! '/));! ,%(&#'E '(&60;/* ,%(&#' /&) !&),%(&#' ;(C!;3 #% $%&#*(=0#!
#% /& !'#(5/#! 2%* #+! (&#!6*/;<
• F!#!*5(&! ,/#+ %2 '#!!,!'# )!'$!&#< D# 5/3 =! #+! $/'! #+/# #+!*! (' &%
$%&#(&0%0' ,/#+ G%(&(&6 #+! !&),%(&#' /&) %&! &!!)' #A% %* 5%*! '#!!,!'#
)!'$!&# ,/#+'<
8B
2
1
0
z
0
-1
-2
-2
-1
0
1
2
!"#$% &#'(#)$ %*+,'- ).! #" /*)&012. (0!#$!%3
• 45*6)*(! ,'(!-$*6 %*+,'- ).! #" 7*(.#'2. 6!%%* *. *88$#8$,*(!3
90! :##+. :1 ;!'<!$ = >$.?*- @ A&0*8(!$ BC@ *'< ;6!,.(!,' = D*'<!6.%*'' 1
A&0*8(!$ EC &#'(*,' %*'1 !F*%86!. G0,&0 .0#)6< :! .()<,!< ,' <!(*,63
90! H$.( !F*%86! :!6#G ,. (*+!' "$#% ;!'<!$ *'< >$.?*-3
•
!"#$%&
/#'.,<!$
I(λ) =
D!$!
Z
1
eiλt log t dt.
0
p(z) = iz = ix − y.
90!$! *$! '# .*<<6! 8#,'(.3 90! .(!!8!.( <!.&!'(I*.&!'( 8*(0. *$! -,5!' :1
ℑ(p(z)) = x = constant.
J,'&! u(x, y) = ℜ(p(z)) = −y@ "#$ y > 0 (0! &)$5!. x = constant *$! .(!!8!.(
<!.&!'( 8*(0.3
K6.# '#(! (0*( (0!$! ,. '# &#'(,')#). .(!!8!.( <!.&!'( 8*(0 8*..,'- (0$#)-0
(0! (G# !'<8#,'(. #" (0! ,'(!-$*6 x = 0 *'< x = 13
90,. %#(,5*(!. (0! &0#,&! #" (0! &#'(#)$ C1 + C2 + C3 (0*( G! <!"#$% (0!
#$,-,'*6 8*(0 #" ,'(!-$*(,#'@ .!! L,-3 M3 7! (*+! * :$*'&0 &)( *6#'- (0! '!-*(,5!
$!*6 *F,. "#$ log(z)3
N.,'- /*)&012. (0!#$!% G! &*' G$,(!
Z
1
log(t)e
0
iλt
dt = −
Z
eiλz log z dz.
C1 +C2 +C3
!! "!#!"!$%! &$ '!%()"! *
OP
y
C2
R
C3
C1
x
!"#$% &' (%)*$+%, -*./*#$ )*$ !./%"$01
*$ C2 2#/ z = x + iR 0., /3%.
Z
0., 4% 5%% /30/
=−
C2
|
Z
C2
Z
=i
C1
Z
0
Z
−Rλ
1
| log(x + iR)| dx
0
R
iλ(1+iy)
dy = ie
iλ
0
*$ C3 2#/ z = iy /3%.
Z
C3
= −i
7%//!." R → ∞ 4% 8., /30/
I(λ) = i
9*4
i
Z
Z
∞
e
−λy
0
∞
e
−λy
Z
∞
0
log(1 + iy)e−yλ dy.
0
log(iy)e−λy dy.
log(iy) dy = i
1
π
+i
2λ
λ
R
0
log(iy) dy − ie
Z
Z
R
0
=−
log teiλt dt.
log(x + iR)eiλ(x+iR) dx
|≤e
log(1 + iy)e
0
1
0., /3#5 "*%5 /* 6%$* 05 R → ∞.
*$ C1 2#/ z = 1 + iy /3%.
Z
R1
Z
iλ
∞
0
Z
∞
log(1 + iy)e−λy dy.
0
e−λy (log y +
iπ
) dy
2
(log(y) − log(λ))e−y dy,
:;
=−
π
i log λ iγ
−
+
2λ
λ
λ
!"#" γ $% &!" '()"# *+,%&-,& -,. " !-/" (%". &!" #"%()& &!-&
−γ =
Z
∞
log ye−y dy.
0
0"1& -22)3$,4 5-&%+,6% )"77- &+ &!" $,&"4#-)
I1 = ie
iλ
4$/"%
I1 ∼ ie
iλ
Z
0
I1 ∼ e
I(λ) =
Z
1
log(t)e
iλt
0
∞
log(1 + iy)−λy dy
0
∞
∞X
iλ
8",*" 2(&&$,4 $& -)) &+4"&!"#
Z
(−1)n−1
n=1
∞
X
n=1
(iy)n −λy
e
dy,
n
(−i)n+1 Γ(n + 1)
.
nλn+1
∞
X
i log λ 2iγ + π
(−1)n (i)n+1 Γ(n)
iλ
dt ∼ −
.
−
+e
λ
2λ
λn+1
n=1
!"#$%&
9+,%$."# &!" $,&"4#-)
1
I(λ) =
2πi
Z
c+i∞
c−i∞
1
eλ(at−t 2 )
dt,
t
!"#" a, c -#" 2+%$&$/" *+,%&-,&% -,. " &-:" - ;#-,*! *(& -)+,4 &!" ,"4-&$/" #"-)
-1$%<
5" #"=($#" &!" ;"!-/$+(# +> I(λ) -% λ → ∞. 8"#"
1 1
p′ (t) = a − t− 2 ,
2
1
p(t) = at − t 2 ,
1 3
p′′ (t) = t− 2 .
4
?!"#" $% - %$72)" %-..)" 2+$,& 4$/", ;3 p′(t) = 0 $" -& t = t0 = 1/(4a2).
0+&" &!-& p′′(t0) = 2a3 -,. %+ &!" %&""2"%& ."%*",& 2-&!% !-/" .$#"*&$+,%
θ = π/2, 3π/2 "7-,-&$,4 >#+7 &!" t = t0 <
@3 9-(*!36% &!"+#"7 " *-, .">+#7 &!" 2-&! +> $,&"4#-&$+, &+ 2-%% &!#+(4!
&!" %-..)" 2+$,& -% %!+ , $, &!" A$4< B<
?!(% &+ +;&-$, &!" )"-.$,4 +#."# "%&$7-&" >+# &!" $,&"4#-)C " *-, -22#+1$7-&"
&!" DE 2-&! ;3 - %&#-$4!& )$," $, &!" .$#"*&$+, +> %&""2"%& ."%*",&C $" 2(& t =
1
+ iT -,. ,+&" &!-&
4a
2
1
at − t 2 = −
2a3 2
1
−
T + ...,
4a
2
FG
y
SD
L
t0
11111111111
00000000000
00000000000
11111111111
x
!"#$% &' ($!"!)*+ ,*-. L !/ 0%12$3%0 -2 -.% /-%%,%/- 0%/4%)- ,*-.
-.$2#". -.% /*00+% ,2!)- t = t0 = 1/(4a2 ).
*)0
SD
,*//!)"
1
= 4a2 + . . . .
t
5.#/ -.% !)-%"$*+ 6%423%/
1
Z
eλ(at−t 2 )
1
I(λ) =
dt,
2πi SD
t
Z ∞
λ
1
3 2
e− 4a e−a T λ 4a2 i dT.
∼
2πi −∞
7%)4%
I(λ) ∼ e
−λ
4a
2a2
π
Z
∞
e
−a3 T 2 λ
dT = 2
−∞
r
a −λ
e 4a .
πλ
52 26-*!) 32$% -%$3/ 2)% )%%0/ -2 82$9 .*$0%$:
!$/- )2-% -.*- -.% /-%%,%/- 0%/4%)- ,*-./ /*-!/1;
1
p(t) = p(t0 )
=⇒ at − t 2 = −
1
,
4a
*)0 /2 -.% !3*"!)*$; ,*$- 21 p(t) !/ <%$2 *+2)" -.%/% ,*-./: 7%)4% !1 8% ,#1
−W = at − t 2 +
1
4a
8.%$% W !/ $%*+ *)0 ,2/!-!=%> ?6%4*#/% 8% .*=% * @A ,*-.B 8% C)0 -.*1
"!=!)"
at − t 2 +
1
+W =0
4a
"
1
1
+ W )] 2
1 ± [1 − 4a( 4a
t=
2a
DE
#2
1
=
1
1 ± 2a 2 W 2
2a
!2
.
!" ± #$%&# !"'" $&($)*+" +!" +,- #+""."#+ ($'")+$-&# "/*&*+$&% 0'-/ t = t01 #""
2$%3 4 *&( 56 "7.*&($&% 0-' #/*88 W ," #"" +!*+ + #$%& )-''"#.-&(# +- +!" π/2
($'")+$-& *&( +!" − #$%& +!" 3π/2 ($'")+$-&3 9" )*& ,'$+"
y
D+
L
t0
11111111111
00000000000
11111111111
00000000000
x
D−
2$%:'" 4; !" #+""."#+ ("#)"&+ .*+!# D+ *&( D− "/*&*+$&% 0'-/ t = 1/4a2.
1
I(λ) =
2πi
<-,
,!"'" σ = 1 0-'
=8#-
Z
D+
−
Z
D−
1
eλ(− 4a −W ) dt
dW.
t
dW
√
1
i
dt
= σ(1 + σ2i aW ) 3 W − 2 ,
dW
2a 2
D+ *&( σ = −1 0-' D− .
√
1
= 4a2 (1 + 2iσ aW )−2 .
t
- :#" 9*+#-&># 8"//* ," &""( +!" "7.*&#$-& -0
*5-@" "7.'"##$-& %$@"#
1 dt
t dW
*# W
→ 0+3
?#$&% +!"
1
1
1
4a2 i
1 dt
− 21
+ 2ia 2 )(1 + 2iσa 2 W 2 )−2 ,
=
3 (σW
t dW
2a 2
1
1
1
1
3
3
∼ 2ia 2 [σW − 2 − 2ia 2 − 4aσW 2 + 8ia 2 W + 16a2 σW 2 + . . . ].
A"'" ," !*@" :#"( +!" 0*)+ +!*+ σ2 = 1. !:#
I(λ) ∼
Z
+
∞
0
Z
∞
0
1
1
− 21
1
2
1
λ
1
2a 2 ie− 4
2πi
1
3
1
2
3
2
3
e−λW (W − 2 − 2ia 2 − 4aW 2 + 8ia 2 W + 16a2 W 2 + . . . ) dW
e
−λW
(W
2
3
2
+ 2ia − 4aW − 8ia W + 16a W + . . . ) dW ,
BC
!"#!
λ 5
Γ( 32 )
e− 4 Γ( 12 )
2 Γ( 2 )
I(λ) ∼ 2a
− 4a 3 + 16a
+ ... ,
1
5
π
λ2
λ2
λ2
r
a −λ
2a 12a2
∼2
e 4a 1 −
+ 2 + ... ,
πλ
λ
λ
1
2
$% λ → ∞.
!"#$%& &'"%()!*
I(λ) =
0'1
p(t) = i(t + t3 /3),
Z
∞
−∞
3
eiλ(t+t /3)
dt.
2t2 + 1
+,-./
p′ (t) = i(1 + t2 ),
p′′ (t) = 2it.
!"#! 1! 2$3! %(456! %$))6! 5'("7% $7 t = ±i $")
p(±i) = ∓2/3,
p′′ (±i) = ∓2.
829% 72! )(*!#7('"% ': %7!!5!%7 )!%#!"7 :*'4 t = i $*! θ = 0, π $") 72! )(*!#7('"%
': %7!!5!%7 )!%#!"7 :*'4 t = −i $*! θ = π/2, 3π/20!;7 "'7! 72$7 (: 1! %!7 t = Reiφ 72!" :'* 6$*<! R $") λ > 0=
eiλ(t+t
3 /3)
∼ O(e−
λR3
3
sin(3φ)
)
$") 72(% )!#$>% 5*'3()!) 72! sin(3φ) 7!*4 (% 5'%(7(3!- ?' (: 1! )(%56$#! 72! #'"7'9*
(" 72! 955!*@2$6: 56$"! 72! #'"7'9* %2'96) A!<(" $") !") (" 72! %!#7'*%
2π/3 < φ < π, $") 0 < φ < π/3.
82! %7!!5!%7 )!%#!"7B$%#!"7 5$72% %$7(%:>
<(3("< 1(72 t = x + iy=
ℑ(p(t)) = ℑ(p(±i)) = 0
1
x2
ℑ[i(x + iy + (x3 + 3ix2 y − 3xy 2 − iy 3 ))] = x(1 +
− y 2 ).
3
3
?' 72! %7!!5!%7 )!%#!"7 5$72% !4$"$7("< :*'4 t = i $*! 1 + x3 − y2 = 0 $") :*'4
t = −i $*! x = 00'7! $6%' 72$7 (: y2 = ( x3 − 1) 72!" :'* 6$*<! x 1! 2$3! y ∼ ± √13 x- C %D!7#2
': 72! 5$72 (% <(3!" (" E<- ,82! $A'3! $"$6>%(% %9<<!%7% 72$7 1! #$" )!:'*4 72! '*(<("$6 #'"7'9* (" +,-./
7' 72! 955!*@2$6: 56$"! '" 7' 72! %7!!5!%7 )!#%!"7 5$72 72*'9<2 t = i= %!! E<- ,C556>("< &$9#2>F% 72!'*!4 1! 'A7$("
2
2
Z
√
eiλ(t+t /3)
2],
dt
=
2πiRes[t
=
i/
2t2 + 1
3
L1 +C1 +C2 +C3
GH
(b)
(a)
y
i
C2
i
C3
C1
L1
x
−i
!"#$% &' ()* +,%%-%., /%.0%1, -),2 ,2$3#"2
36 5)#0289. ,2%3$%:;
.!10% ,2% !1,%"$)1/ 2). ) .!:-7% -37% ),
"3%. ,3 =%$3 63$ 7)$"% R )1/ .3
Z
3
L1
eiλ(t+t /3)
dt =
2t2 + 1
Z
(4* 531,3#$. 63$ )--7!0),!31
√
t = i/ 2.
3
−C2
t=i
<2% !1,%"$)7. )731"
eiλ(t+t /3)
e
dt
+
2πi[
2t2 + 1
iλ( √i −
2
4i
√
2
6
C 1 , C3
i
√
)
2
].
3$ ,2% !1,%"$)7 )731" ,2% .,%%-%., /%.0%1, -),2 >% 0)1 -#, (63$ ,2% 7%)/!1" 3$/%$
031,$!4#,!31 3178* t = i + T ,3 34,)!1
√
2
2
2 − 5λ
eλ(− 3 −T )
√
dT +
πe 6 2 ,
I(λ) ∼
2
−∞ (−2 + 1)
√
r
π −2λ/3
2 − 5λ
√
e
+
πe 6 2 .
∼−
λ
2
Z
∞
??
© Copyright 2025 Paperzz